J. Marzat, H. Piet-lahanier, F. Damongeot, and E. Walter, Autonomous fault diagnosis: State of the art and aeronautical benchmark, Proceedings of the 3rd European Conference for Aero-Space Sciences, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429743

D. Henry, S. Simani, and R. Patton, Fault detection and diagnosis for aeronautic and aerospace missions. Fault Tolerant Flight Control, pp.91-128, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00407376

S. X. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, 2008.
DOI : 10.1007/978-1-4471-4799-2

T. J. Santner, B. J. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, p.1246, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

C. E. Rasmussen and C. K. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

URL : http://hdl.handle.net/11858/00-001M-0000-0013-F365-A

D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

J. Marzat, E. Walter, H. Piet-lahanier, and F. Damongeot, Automatic tuning via Kriging-based optimization of methods for fault detection and isolation, 2010 Conference on Control and Fault-Tolerant Systems (SysTol), pp.505-510, 2010.
DOI : 10.1109/SYSTOL.2010.5676075

URL : https://hal.archives-ouvertes.fr/hal-00520808

J. P. Kleijnen, Kriging metamodeling in simulation: A review, European Journal of Operational Research, vol.192, issue.3, pp.707-716, 2009.
DOI : 10.1016/j.ejor.2007.10.013

M. Schonlau, Computer Experiments and Global Optimization, 1997.

D. R. Jones, M. J. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

M. J. Sasena, Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations, 2002.

P. M. Frank and S. X. Ding, Survey of robust residual generation and evaluation methods in observer-based fault detection systems, Journal of Process Control, vol.7, issue.6, pp.403-424, 1997.
DOI : 10.1016/S0959-1524(97)00016-4

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

J. S. Lehman, T. J. Santner, and W. I. Notz, Designing computer experiments to determine robust control variables, Statistica Sinica, vol.14, issue.2, pp.571-590, 2004.

E. Y. Chow and A. S. Willsky, Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control, vol.29, issue.7, pp.603-614, 1984.
DOI : 10.1109/TAC.1984.1103593

J. Marzat, E. Walter, and H. Piet-lahanier, Min-max hyperparameter tuning, with application to fault detection, Proceedings of the 18th IFAC World Congress, 2011.
DOI : 10.3182/20110828-6-IT-1002.00476

URL : https://hal.archives-ouvertes.fr/hal-00615618

K. Shimizu and E. Aiyoshi, Necessary conditions for min-max problems and algorithms by a relaxation procedure, IEEE Transactions on Automatic Control, vol.25, issue.1, pp.62-66, 1980.
DOI : 10.1109/TAC.1980.1102226