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Abstract: In order to reach satisfactory performance, fault diagnosis methods require the
tuning of internal parameters, usually called hyperparameters. This is generally achieved by
optimizing a performance criterion, typically a trade-o� between false-alarm and non-detection
rates. Perturbations should also be taken into account, for instance by considering the worst
possible case. A new method to achieve such a tuning is described, which is especially interesting
when the simulations required are so costly that their number is severely limited. It achieves
min-max optimization of the tuning parameters via a relaxation procedure and Kriging-based
optimization. This approach is applied to the worst-case optimal tuning of a fault diagnosis
method consisting of an observer-based residual generator followed by a statistical test. It readily
extends to the tuning of hyperparameters in other contexts.

Keywords: e�cient global optimization, expected improvement, fault detection and isolation,
Gaussian processes, hyperparameter tuning, Kriging, min-max, worst-case optimization.

1. INTRODUCTION

So many methods have been developed to address fault
detection and isolation that users may be at a loss to
select the most suitable one for a given system. A fair
comparison requires an adequate tuning of the internal
parameters, often calledhyperparameters, of each of the
candidate methods. This step is a major issue, as it has a
strong impact on performance and robustness. Tuning can
be tackled by optimizing a suitable performance criterion
on a representative benchmark.

Very recently, Falcoz et al. (2009) used an evolutionary
algorithm to tune the covariance matrices of Kalman �lters
for fault detection. In (Marzat et al. (2010)), we introduced
an alternative approach for the tuning of hyperparame-
ters in fault diagnosis relying on tools developed in the
context of computer experiments (Santner et al. (2003)).
This approach is especially relevant when the simulations
required are so costly that their number is severely limited.
It was applied to the tuning of hyperparameters of several
change-detection methods so as to minimize some trade-
o� between false-alarm and non-detection rates. Such a
performance index is seen as the output of a black-box
computer simulation whose inputs are the hyperparame-
ters to be tuned. Kriging (also known as regression via
Gaussian processes) is used along with recursive Bayesian
optimization based on the concept of Expected Improve-
ment (Jones (2001)) to facilitate optimal tuning by re-
ducing its computational cost. This methodology is not
limited to fault diagnosis and could be applied to many
types of systems.

An important concern, left aside in our previous study,
is robustness to the e�ect of environmental variables, i.e.,

disturbances, modeling errors or measurement uncertainty.
The tuning of a fault detection method should remain valid
for a reasonable set of possible values of the environmental
variables. In the present paper, the previous procedure
is extended to take into account such environmental dis-
turbances. Most of the studies on computer experiments
in this context use a probabilistic modeling of the envi-
ronmental variables (Lehman. et al. (2004)). Following a
di�erent path, we assume that bounds of the environmen-
tal space are available and look for an optimal tuning in
the worst-case sense. Worst-case optimality is a concern
that has been raised in many studies on fault detection. In
particular, pioneering work by Chow and Willsky (1984)
suggests a min-max choice of parameters for parity space
methods with respect to modeling uncertainty. In the same
vein, adaptive thresholds, proposed by Frank and Ding
(1997) (see also Zhang and Qin (2009)), or H1 methods
(Falcoz et al. (2010)) focus on minimizing the impact of
disturbances on the residuals.

This paper is organized as follows. First the tuning ap-
proach of Marzat et al. (2010) is brie�y recalled in Sec-
tion 2, and a new method combining a min-max optimiza-
tion procedure by relaxation (Shimizu and Aiyoshi (1980))
and Kriging-based optimization is introduced in Section 3
to deal with environmental variables. This method is then
applied in Section 4 to the tuning of a fault detection
strategy comprising an observer-based residual generator
coupled with a statistical test. The environmental vari-
ables considered are the noise level and the size of the fault.
Numerical results demonstrate the interest and practica-
bility of the methodology. Conclusions and perspectives
are in Section 5.



2. TUNING HYPERPARAMETERS WITH EGO

In this section, which summarizes the results of Marzat
et al. (2010), the environmental conditions are considered
as �xed.

2.1 Problem formulation

The vector of the hyperparameters of a candidate fault
detection method isx c 2 Xc, whereXc is a known compact
set. It is assumed that a continuous scalar cost function
y(x c), re�ecting the performance level, can be evaluated
through a computer simulation of the system considered.
Tuning can then be formalized as the search for

bx c = arg min
x c 2 Xc

y(x c) (1)

As y(�) can only be evaluated at sampled points, we use
a black-box global optimization method that has become
very popular in the context of computer experiments. The
overall procedure is recursive and presupposes that we
have already computed a set of training data y c;n c =
[y(x c;1); :::; y(x c;n c )]T , corresponding to an initial sampling
of nc points in Xc, Xc;n c = [ x c;1; :::; x c;n c ]. The main
ingredients of this method, namely Kriging and E�cient
Global Optimization are now recalled.

2.2 Kriging

In Kriging (Matheron (1963)), the black-box function y(�)
is modeled as a Gaussian process, written as

Y(x c) = f T (x c) b + Z (x c) (2)

where f (x c) is some known regression function vector
(usually chosen constant or polynomial in x c), b is a
vector of unknown regression coe�cients to be estimated,
and Z (�) is a zero-mean Gaussian process with known (or
parametrized) covariance function k (�; �). Kriging is then
the search for the best linear unbiased predictor(BLUP)
of Y (�) (Kleijnen (2009)).

The actual covariance k (�; �) is usually unknown. It is
expressed as

k (Z (x c;i ) ; Z (x c;j )) = � 2
Z R (x c;i ; x c;j ) (3)

where� 2
Z is the process variance andR (�; �) is a parametric

correlation function. Both � 2
Z and the parameters ofR (�; �)

must be chosen or estimated from the available data.
Under a stationarity assumption, R (x c;i ; x c;j ) depends
only on the displacement vectorx c;i � x c;j , denoted by h
in what follows. A frequent choice of correlation function,
also adopted in the present paper, is thepower exponential
correlation function

R (h) = exp
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dX
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�
�
�
�
hk

� k

�
�
�
�

pk
!

(4)

where 0 < p k � 2, and hk is the k-th component of h.
Note that R (h) tends to 1 when h tends to 0, and to 0
when h tends to in�nity. The covariance parameters � k
may be estimated from the data by maximum likelihood,
to get what is known asempirical Kriging , which we used
for our application. A wide range of other choices for the
correlation function is available (Santner et al. (2003)).

De�ne R as the n � n matrix such that
R (i; j ) = R (x c;i ; x c;j ) (5)

r (x c) as the n vector

r (x c) = [ R (x c; x c;1) ; :::; R (x c; x c;n )]T (6)
and F as the n � dim b matrix

F = [ f (x c;1) ; :::; f (x c;n )]T (7)

The maximum-likelihood estimate bb of the vector of
the regression coe�cients b from the available data
fX c;n c ; y c;n c g is

bb =
�
FT R � 1F

� � 1
FT R � 1y c;n c (8)

The prediction of the mean of the Gaussian process at
x c 2 Xc is then

bY(x c) = f T (x c) bb + r (x c)T R � 1
�

y c;n c � F bb
�

(9)

This prediction is linear in y c;n c and interpolates the
training data, as bY(x c;i ) = y(x c;i ). Another interesting
property of Kriging, which is crucial regarding global
search, is the possibility to compute the variance of the
prediction error (Schonlau (1997)) at x c 2 Xc, when the
parameters of the covariance are known, by

b� 2 (x c) = � 2
Z

�
1 � r (x c)T R � 1r (x c)

�
(10)

2.3 E�cient Global Optimization (EGO)

The idea of EGO (Jones et al. (1998)) is to use the Kriging
predictor bY to �nd the (nc + 1) -st point at which the
computer simulation will be run. This point is chosen
optimally according to a criterion J (�) that measures the
interest of an additional evaluation at x c, given the past
results y c;n c obtained at Xc;n c and the Kriging prediction
of the mean bY(x c) and variance b� 2 (x c),

x c;n c +1 = arg max
x c 2 Xc

J
�

x c; Xc;n c ; y c;n c ; bY (x c) ; b� 2 (x c)
�

(11)
A common choice for J (�) is EI, for Expected Improve-
ment (Jones (2001)). The best available estimate of the
minimum of y(�) after the �rst nc evaluations is

yn c
min = min

i =1 :::n c

f yi = y (x c;i )g

With
u =

�
yn c

min � bY (x c)
�

=b� (x c) (12)

the EI is expressed in closed-form as
EI( x c) = b� (x c) [u� ( u) + � (u)] (13)

where � is the cumulative distribution function and � the
probability density function of the normalized Gaussian
distribution N (0; 1). Maximizing EI achieves a trade-o�
between local search (numerator ofu) and the exploration
of unknown areas (whereb� is high), and is thus well suited
for global optimization.

Algorithm 1 summarizes the procedure. A preliminary
sampling, by Latin Hypercube Sampling (LHS) for ex-
ample, is required to obtain the nc points of the initial
designXc;n c . New points x c maximizing EI are recursively
explored, until the value of EI becomes lower than some
threshold " c

EI or the maximal number of iterations allowed
nc;max is reached. The estimate of the minimizer is then
the argument of the empirical minimum on the points
explored.



Algorithm 1. E�cient Global Optimization (EGO)
1: ChooseXc;n c = f x c;1; :::; x c;n c g by LHS in Xc

2: Compute y c;n c = [ y (x c;1) ; :::; y (x c;n c )]T

3: while maxx c 2 Xc f EI( x c)g > " c
EI and nc < n c;max do

4: Fit the Kriging model on the known data points
fX c;n c ; y c;n c g as described in Section 2.2

5: Find yn c
min = min i =1 :::n c f y (x c;i )g

6: Find x c;n +1 = arg max x c 2 Xc f EI( x c)g
7: Compute y(x c;n c +1 ), append it to y c;n c and append

x c;n c +1 to Xc;n c

8: nc  nc + 1
9: end while

3. WORST-CASE TUNING WITH ENVIRONMENTAL
DISTURBANCES

In this section, we consider the optimal tuning of the
vector of hyperparametersx c 2 Xc when the vector of the
environmental variables xe is not �xed, and only assumed
to belong to a known compact setXe.

3.1 Formulation of the problem

The objective is now to �nd bx c and bxe such that

f bx c; bxeg = arg min
x c 2 Xc

max
x e2 Xe

y(x c; xe) (14)

We are thus searching for the best hyperparameter tuning
of the considered fault diagnosis method for the worst
values of the environmental variables.

Global optimization of such a min-max criterion, where
Xc and Xe are compact sets of continuous values, is
not straightforward (for a survey, see Rustem and Howe
(2002)). A simple idea would be to �nd the minimizer bx c
on Xc for a �xed value xe 2 Xe, then to maximize on Xe for
this �xed value bx c, and to alternate these steps. However,
the convergence of this algorithm, known asBest Replay
(see Rustem (1998)), is not guaranteed and it turns out
very often to cycle through useless values of candidate
solutions. To overcome these drawbacks, we instead use
iterative relaxation as described by Shimizu and Aiyoshi
(1980).

3.2 Min-max optimization

Shimizu and Aiyoshi transform the initial minimax prob-
lem (14) by introducing an intermediate scalar � to be
minimized,

(
min

x c 2 Xc ;�
�

subject to y(x c; xe) � �; 8xe 2 Xe

(15)

This is an equivalent minimization problem with respect to
an in�nite number of constraints, which is still intractable.
It is then solved approximately by following an iterative
relaxation procedure, where the constraints in (15) are
replaced by

y(x c; xe) � �; 8xe 2 R e (16)

with R e a �nite set that contains the values ofxe already
explored.

Algorithm 2 presents the resulting procedure. Note that if
this procedure is stopped before the� threshold is reached,
an approximate solution is still obtained, corresponding to
a higher threshold � 0. This algorithm has been proven to
terminate after a �nite number of iterations if the following
reasonable assumptions hold:

� Xc and Xe are nonempty and compact.
� y(�; �) is continuous in xe, di�erentiable with respect

to x c and with �rst partial derivatives continuous in
x c.

Algorithm 2. Min-max procedure

1: Choose randomly an initial point x (1)
e 2 Xe and set

R e =
n

x (1)
e

o
and i = 1 .

2: Solve the current relaxed problem

x ( i )
c = arg min

x c 2 Xc

�
max

x e2R e

y(x c; xe)
�

3: Solve the maximization problem

x ( i +1)
e = arg max

x e2 Xe

y(x ( i )
c ; xe)

4: If
y(x ( i )

c ; x ( i +1)
e ) � max

x e2R e

y(x ( i )
c ; xe) < �

then return
n

x ( i )
c ; x ( i +1)

e

o
as an approximate solution

to the initial min-max problem.
Else, append x ( i +1)

e to R e and go to Step 2 with
i  i + 1 .

This algorithm is generic, and leaves the choice of opti-
mization procedures to solve Steps 2 and 3 to the user.
It can thus be easily combined with EGO (Algorithm 1)
to address the min-max optimization of expensive-to-
evaluate black-box functions through computer experi-
ments.

3.3 Min-max Kriging-based optimization

Steps 2 and 3 of Algorithm 2 are performed using two
independent EGO optimizations. This implies that two
samplings will be required, one onXc and one on Xe.
An alternative would be to �t a global Kriging model on
Xc � Xe and then to apply Algorithm 2 to �nd the min-
max solution and continue the procedure iteratively. This
strategy is also investigated but beyond the scope of this
paper.

The objective of Step 2 of Algorithm 2 is to �nd a mini-
mizer of the function yrelax (x c; R e) = max x e2R e f y(x c; xe)g,
whereR e contains a �nite number of values of xe obtained
from previous iterations of the procedure. To �nd the
minimizer x ( i )

c , the following steps are carried out:

� Choice of a designXc;n c = f x c;1; :::; x c;n c g of nc points
in Xc by LHS.

� Computation of y c;n c = [ yrelax (x c;1); :::; yrelax (x c;n c )]T .
This is done by �nding, for each point of the design
Xc;n c , the maximum of y(�; �) for each element of
R e, which leads to the evaluation of this function
(nc � dim R e) times at each iteration. To reduce
computational cost and evaluate it only at nc new
points, the same designXc;n c is used at each iteration
of the global min-max procedure.



� The while loop then proceeds as described in Al-
gorithm 1 until the approximate solution is deemed
satisfactory or the sampling budget is exhausted. The
maximum value of y on R e for the newly sampledx c
is to be computed at Step 7 of EGO.

Step 3 maximizesy(�; �) with respect to xe, for the �xed
value x c = x ( i )

c by looking for

x ( i +1)
e = arg min

x e2 Xe

f� y(x ( i )
c ; xe)g (17)

with EGO. As in the relaxation step, the same initial LHS
sampling Xe;n e on Xe can be used for all the iterations of
the min-max optimization procedure. A widely used rule
of thumb for the initial samplings Xc;n c and Xe;n e is to
draw ten points per dimension ofXc and Xe (Jones et al.
(1998)).

The complete min-max optimization strategy involves �ve
parameters to be chosen, namely

� the tolerance � on the stopping condition of Step 4 of
Algorithm 2;

� the maximal numbers of iterations allowednc;max and
ne;max for each of the EGO algorithms;

� the tolerances" c
EI and "e

EI on the values of EI for each
of the EGO algorithms.

4. APPLICATION TO FAULT DIAGNOSIS

As a simple illustrative example, we consider the tuning
of a fault detection scheme composed of a residual gen-
erator (via an observer) and a CUSUM test (Basseville
and Nikiforov (1993)). The test case is the reduced lon-
gitudinal model of a missile �ying at a constant altitude
of 6000 m. The state vector, consisting of the angle of
attack, angular rate and Mach number, is x = [ �; q; M ]T .
The control input is the rudder angle, u = � , and the
available measurement is the normal acceleration,
 = az.
The linearized model around the operating point x0 =
[��; �q; �M ]T = [20 deg; 18:4 deg=s; 3]T is given by the fol-
lowing state-space model, after discretization with a time
step of 0.02s,

�
x k+1 = Ax k + B uk


 k = Cx k + D uk + wk + f k
(18)

where

A =

"
0:9163 0:0194 0:0026

� 5:8014 0:9412 0:5991
� 0:0485 � 0:005 0:996

#

; B =

"
� 0:0279
� 2:5585
� 0:0019

#

C = [ � 2:54 0 � 0:26] ; D = � 0:204
(19)

This model is simulated on a time horizon of 50 seconds.
A sensor fault f on the measurement ofaz occurs at time
25 seconds. This incipient fault is simulated by a ramp
of slopes which is added to the current measured value.
The measurement noisew is uniformly distributed between
bounds [� �; � ]. These two parametersxe = [ �; s ]T are
the environmental variables to which the tuning should
be robust. Xe is such that � 2 [10� 7; 10� 3] and s 2
[10� 3; 10� 1].

The fault diagnosis method considered consists of a resid-
ual generator and a statistical test. An observer is used

to estimate the state and then the output of the system,
which is compared to its measured value to generate a
residual sensitive to the sensor fault considered. The nom-
inal mean and variance of this residual on the �rst 100
values are estimated. The signal is then normalized to zero
mean and unit variance according to these estimates, in
order to compensate for the di�erences of behavior induced
by a change of values of the environmental variables.
Thus, the same tuning of a statistical test is applicable
to di�erent levels of noise. A CUSUM test is used on
the residual to decide whether it is signi�cantly beyond
its initial mean and to provide a Boolean decision on the
presence of the fault. The observer has three poles to be
placedp1; p2; p3, and the CUSUM test has two parameters:
the size of the change to be detected� and the associated
threshold � . These �ve parameters x c = [ p1; p2; p3; �; � ]T

are the hyperparameters of the method to be tuned. The
set Xc is de�ned as follows:p1; p2; p3 2 [0; 0:8], � 2 [0:01; 1]
and � 2 [1; 10].

The cost function y(x c; xe) is y = r fd + r nd where r fd
and r nd are respectively false-detection and non-detection
rates, as de�ned in Barty± et al. (2006). It achieves a
trade-o� between those contradictory objectives and takes
bounded values between 0 and 2.

The parameters of the optimization procedure have been
set to � = 10 � 6; nc;max = ne;max = 100; " c

EI = "e
EI = 10 � 4.

The prior mean of the Gaussian process is assumed con-
stant, while its variance and the parameters � k of the
correlation function (4) are estimated from the available
data by maximum likelihood at each iteration of EGO.
Our implementation is based on the toolbox SuperEGO
by Sasena (2002). The DIRECT optimization algorithm
by Jones et al. (1993) is used to achieve Step 6 of Algo-
rithm 1. One hundred runs of the entire procedure have
been performed to assess convergence, repeatability and
dispersion of its results. Mean, median and standard devia-
tion for the hyperparameters and environmental variables,
along with corresponding values of the cost function and
number of evaluations are reported in Table 1. Mean and
median values are close, which suggests a bilateral disper-
sion without too many outliers. Relative dispersion of the
results suggest that several tuning of the fault diagnosis
method may be suitable to reach acceptable performance.
It is important to note that the number of evaluations is
quite low with an average sampling of approximately 60
points per dimension, leading to a quick tuning. Moreover,
the repetition of the procedure suggests that on this exam-
ple an acceptable value for the tuning is always obtained,
and that the worst-case is correctly identi�ed.

The space of environmental variablesxe = [ �; s ]T is
displayed on Figure 1, showing the results for the 100 runs
of the procedure on the test case. These results indicate
that the worst environmental conditions are located near
the smallest value of the fault and highest value of the
noise, which makes sense. Figure 2 shows the values
obtained for the hyperparameters x c = [ p1; p2; p3; �; � ]T

and the associated cost functiony(x c; xe).

Figure 3 shows the residual and corresponding Boolean
decision obtained via the observer and the CUSUM test
tuned at the mean of their estimated values, for the
mean of the evaluated worst-case environmental condi-



Table 1. Results for 100 replications of the
tuning procedure

Median Mean Std. deviation

Hyperparameter vector x c

Pole p1 0:73 0:7363 5:2 � 10� 2

Pole p2 0:726 0:7058 6:6 � 10� 2

Pole p3 0:72 0:72 5:3 � 10� 2

Change size � 0:065 0:0714 4:9 � 10� 2

Threshold � 4:553 4:5379 0:2

Environmental vector x e

Noise level � 9:8 � 10� 4 9:3 � 10� 4 1:1 � 10� 4

Fault slope s 1 � 10� 3 1:1 � 10� 3 2 � 10� 4

Cost and number of evaluations

Cost function y 0:114 0:125 4:7 � 10� 2

Evaluations 419 430:9 220

tion. For comparison, two sample points are taken in the
environmental space at xe;1 = [10 � 4; 0:01]T and xe;2 =
[10� 3; 0:02]T . The associated residuals and decision func-
tions are respectively displayed in Figures 4 and 5. Those
residuals react more strongly to the fault than in the worst
case, and will therefore lead to easier decision. This is con-
�rmed by the corresponding decision functions, obtained
by applying the CUSUM test with optimized parameters
to the previous residuals. The worst-case residual satis-
factorily detects this incipient fault, as no false detection
is observed � only a reasonable detection delay. Applying
the same tuning of the method for di�erent areas of the
environmental space lead to excellent results, as there
is still no false detection but also very small detection
delays. Figure 6 shows the value of the objective function
y over Xe for the mean worst-case optimal tuning of the
hyperparameters. It con�rms that the worst-case approach
does not degrade performance too much in less adverse
operating conditions.

Fig. 1. Worst-case values for the 100 replications of the
procedure (blue dots) with mean value (red spot) and
Xe boundaries (black rectangle)

5. CONCLUSIONS AND PERSPECTIVES

A new strategy to address the robust tuning of hyper-
parameters of fault diagnosis methods has been proposed
in this paper. Such a tuning has been formalized as a
min-max optimization problem for a black-box function.
The hyperparameters should optimize the performance
level of the fault detection procedure, for the worst-

Fig. 2. Dispersion for the 5 hyperparameters x c =
[p1; p2; p3; �; � ]T and cost function. Red line indicates
the mean value and thick black lines correspond to
space boundaries

Fig. 3. Residual (left) and Boolean decision (right) for the
mean of the estimated worst-case environmental vari-
ablesxe = [9 :3�10� 4; 1:1�10� 3]T , with the mean of the
estimates of the min-max optimal hyperparameters

Fig. 4. Residual (left) and Boolean decision (right) for sam-
ple point xe;1 = [10 � 4; 0:01]T , with the mean of the
estimates of the min-max optimal hyperparameters

case of environmental variables (measurement noise, dis-
turbances, model uncertainty...). Our solution combines
Kriging-based global optimization with a relaxation pro-
cedure for solving min-max problems.



Fig. 5. Residual (left) and Boolean decision (right) for sam-
ple point xe;2 = [10 � 3; 0:02]T , with the mean of the
estimates of the min-max optimal hyperparameters

Fig. 6. Value of the objective function overXe for the mean
of the estimates of the minimax-optimal hyperparam-
eters

The methodology has been illustrated through the tuning
of a fault detection strategy comprising a residual gener-
ator (observer) and a statistical test (CUSUM) to detect
a sensor fault on a dynamical system. The results support
the choice of a min-max strategy for the tuning of fault
detection methods, as the worst-case tuning may provide
a good performance level on all of the environmental space.

Much more complex problems than the simple illustrative
example described in this paper can be considered. Other
types of hyperparameter tunings can also bene�t from this
methodology.
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