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Abstract

An online approach to nonlinear system identification based on binary-obse
vations is presented in this paper. This recursive method is a nonlirteas@®n of
the LMS-like (least-mean-squares) basic identification method usingytobaer-
vations (LIMBO). It can be applied in the case of weakly nonlinear Dgftiacil-
lator coupled with a linear system characterized by a finite impulse respibise
then possible to estimate both Duffing and impulse response coefficieavgrign
only the system input and the sign of the system output. The impulse resjgons
identified up to a positive multiplicative constant. The proposed method is com
pared in terms of convergence speed and estimation quality with the usi&l L
approach, which is not based on binary observations.
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1 INTRODUCTION

Microfabrication of electronic components such as midex#o-mechanical systems
(MEMS) has known an increasing interest over the past twadkes. The most notable
innovation emanating from these systems is the possiliditpassively integrate sen-
sors with self-test features on the same piece of silicasedd, it is well-known that, as
characteristic dimensions become smaller, the dispegsifilicting electronic devices
tend to become larger. Typical sources of dispersions andrtainties are variations
in the fabrication process or environmental variationdhsagtemperature, pressure or
humidity. Consequently, it is usually impossible to guaeaa priori that a given de-
vice will work properly. Moreover, expensive tests mustritee run after fabrication
to ensure that only suitable devices are commercializedal#ennative consists in im-
plementing self-test (and self-tuning) features such aameater estimation routines,
so that devices can adapt to changing conditions.

However, traditional identification methods [1, 2] are aofteicky to ‘straightfor-
wardly’ adapt from macroscopic scale to microscopic scBleir integration requires
the implementation of a high-resolution analog-to-digitanverter (ADC) which re-
sults in longer design times as well as larger silicon aréhss, parameter estimation
routines based on binary observations are very attractigaulse they only involve the
integration of a 1-bit ADC. Some important contributionattkeep the added cost of
testing as small as possible are available in the literature

In [3], Wigren has developed a least-mean-squares (LMS)pagp to the problem
of online parameter estimation from quantized observatidrhe principle is to esti-
mate the gradient of the least-squares criterion by apprating the quantizer. Under
some hypothesis, it is then possible to guarantee the asyimpbnvergence of this
method to the nominal parameters. In [4], Negreiros suggdstuse a white Gaussian
input to excite the unknown linear system and to estimatetiveer spectral density

(PSD) of the binary output. From this estimated PSD, the rusdaf the unknown



system transfer function can be analytically derived. Hmwgit is not possible to ob-
tain any information concerning the phase of this transfacfion. This limitation has
been overcome by deriving an analytical relationship betwhe coefficients of the
impulse response of the system and the cross-covariantshihary input and output.
Although this approach is fairly simple to implement, itieslon the mixing properties
of the linear system which may not be guarangegriori. Recently, a basic identi-
fication method using binary observations (BIMBO) has begroduced in [5]. The
theoretical framework of this offline weighted-least-s@sa(WLS) approach is based
on the minimization of a criterion where the parameter-delpat weights are chosen
in order to smooth out the discontinuities of the unweighéadt-squares criterion. It
is then possible to guarantee the consistency of this appreen in the presence of
measurement noise, provided that the signal at the inputeo§uantizer is Gaussian
and centered. Furthermore, the estimation quality of BIMB&3 been investigated
in the sense of correlation coefficient between the nomiystesn parameters and the
estimated system parameters. An alternative WLS criter&snafiso been presented in
[6] which is easier to implement than the first one in the ceindé microelectronics.
This approach is as efficient as the one proposed in [5] witheasurement noise,
but leads to a systematic error otherwise. Finally, an enlikiS-like method for es-
timating system parameters based on binary observatidMBQ) has been derived
from the offline WLS approach presented in [6, 5]. Simulatibage provided similar
results than those obtained with the Wigren’s method in $eofnconvergence speed
and estimation quality, and those with a lesser computatioomplexity [7].
Unfortunately, the methods listed above deal with nonlirsgatems. Now, in many
engineering applications, and especially in microfaltedadevices, the dynamic may
significantly be affected by nonlinear effects, which musilscounted for in order to
robustly model the system. In [8], the authors have studiedtification of Wiener and

Hammerstein systems, which are particular nonlinear stras, with binary-valued



output observations. In this paper, we propose to extend M@-like method intro-
duced in [7] under the name of LIMBO in order to estimate omlihe parameters of
a nonlinear system from binary observations. We consideeakly nonlinear Duff-
ing oscillator that is coupled with a linear system chanao¢el by a finite impulse
response. The convergence of this recursive method isrdkesl by simulations and
our results are compared with those obtained by the corm@itLMS algorithm i e.
without quantization).

The structure of the article is the following. In sectiontZ nonlinear system and
its model are introduced. In section 3, the LMS-like aldunritis derived. In section
4, the proposed method is compared with a traditional oniire¢hod, which is not
based on binary observations, in terms of convergence spaestimation quality.

Concluding remarks and perspectives are given in section 5.

2 FRAMEWORK AND NOTATIONS

Let us consider a nonlinear system illustrated in figure bJeT he first branch corre-
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Figure 1: Block diagram of the system model.

sponds to a discrete-time linear time-invariant syskénWe assume that this transfer
function has a finite impulse response of lenigthe. the impulse response can be rep-
resented by a column vectér= (9|)|L=1. A cubic nonlinearity (the so-called Duffing

nonlinearity) is then introduced at the level of the negafeedback branch such that

Yk = ayﬁ with a € R;. Obviously, the subscript indicdsdenotes the discrete time.



Let b an unknown additive noise amd= y + b the noisy output. The system output is
measured via an 1-bit analog-to-digital converter suchdhdy the signs, = S(w) is

known. Here, the functioB of a real numbex is defined as follows:
1 ifx>0
Sx) = 1)
—1 otherwise
By supposing the system not highly nonlinear, the followagproximation can be

done [9]:

Yk = hy * (ka(lyz)
= i (e (e (w—ad)°?) (2)
~ hgx* (ukfor(hk*ukf)

The new block diagram of the system model is then illustrgragbhically in figure 2.

Consequently, the scalar value of the system output atkimmgiven by:

Yk W,
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by,
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Figure 2: New block diagram of the system model.
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In the previous relationyy | = (u|):‘;kL+l is the L sample-long column regression

vector at timek andy | is defined in the same way by:

k—L+1

YL = ((9T90| ,L)3) (4)

1=k

Our goal is to develop a recursive estimation method to ganebusly find good
estimates of both the parameter vedioand the Duffing coefficientt starting from
N observations of the binary outpatknowing the inputu. Let 6 be the estimated
vector of parameters arfd be the estimated Duffing coefficient at tirkeLet us also

introduceyi the estimated system output at tikandsy = S(¥k).

3 PROPOSED LMSAPPROACH

In [7], the LIMBO method is carried out in order to estimatdioa the parameters of a
linear system from binary observations. Since lis available at timé, the authors

judiciously defined the following instantaneous error:

& = |sc— &%k 5)

This suitable formulation has been specified to ensure theathdity with respect to
Ok [5, 6]. Without loss of generality, we adopt this criteriam deal with nonlinear
constraints. Obviously, (5) is also differentiable witlspect tof. By inspiring from
the general LMS algorithm, we can write:

0€2 - 0ex

6 = G- —~ = O—2uE— 6
k1 k leaek k Ukkagk (6)




In the same way, the following relation can be established:

N R 02 R 0
Okr1 = ak—)\kadt = Gk—Z)\kskaaT( (7)

The dynamic LMS stepg andAg must satisfy some conditions to guarantee stability
and convergence of the algorithm. In order to determine taeipus derivatives, let us

first develop the instantaneous error by introducing (3) ({®):
e = s (O L — b hir) (8)

Thus, we can express the derivative with respeélkto

Ak . ~ [ <1 0L
— = - —a +6] —= 9
20, s — & (‘PKL K (dfk,L K36, >> 9
By using relation (4), we have:
i L AT o\ k—L+1
L L 0 10
96, 3(<P|,|_( velL) )l:k (10)
This yields:
;o ~ 3y k-L+1 .
TZ7% _ T _ 11
e 3((61e0)’), 341 (11)
We find:
01 = Ok—2ueex|sc— & (prL — 4autiL)

. A (12)
= O— 21 (5c— 8%k (pr L — 4akti L)



Following the same reasoning, the derivative of the insta@bus error with respect to

Oy is easily obtained:

o R AT A
s = 158 (-0l (13)

And we finally have:

Qi1 = Gk 2\ (Sc—$)7 90y P (14)

The algorithm 1 synthetize all the previous equations. Tdrenalization step on line

Algorithm 1 LIMBO NL

Require: u,s L, N

Lxi—[1 0 - 0]
2: 61% 2‘1
A IX1ll2
3: 010
4: for k=1toN do
5 il (U)o )
] ~ AT 3 —L+1

6 kL <—A ((9k LPI’AL>A>|A=|<
7 Y+ 0 oL — QKB il

S+ S(¥i) , .

X1 ¢ Ok — 2 (S — ) "V (L — 4hiabiy )
100 Gppq o —XKH

[ Xk+1ll2 y A

120 fkra ¢ Ok 2w (S 80 Tk Yl
120 Ger < gl Xaeral3
13: end for

14: return G, q, Graa

10 ensures that the norm 6f is equal to unity and the line 12 is added to guarantee

the homogeneity. Finally, the full operating model is ithaded graphically in figure 3.
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Figure 3: Block diagram of nonlinear LIMBO.

4 RESULTSAND DISCUSSION

In this section, the results obtained with nonlinear LIMB@thod are compared with
those obtained by applying a typical LMS method. Let us ulim®that contrary to
our approach, the standard LMS is not based on quantizedtougasurements and is
manifestly not well adapted to the context of micro eledeenThe idea is to compare
the performance in terms of convergence speed of our methibdowe which not
suffers from a lack o& priori information.

The input signal is a Gaussian white noise with zero mean aitétandard devia-
tion. We consider an impulse response of lerigth 50 and the Duffing coefficiera
is setto 001. In relations (12) and (14), the dynamic LMS stgpandAy must be cho-
sen in order to guarantee stability and convergence of g@itim. Concretely, these
regulative coefficients can be determined by following aapite step size strategy.
Unfortunately, their expression is often not perfectlyustipd to the integration context
of micro devices. Hence, we prefer using constant reg@atoefficients which are

empirically determined. In the present case, we impos€0.0092 and\ = 0.000079



for LMS andpu = 0.0049 and\ = 0.0000165 for LIMBO. Obviously, the two methods
are compared on the same test case. The quality of the orsliimeagiondy is defined
as 1- vg wherevy is the cosine of the angle made éyand@. Since both vectors are
normalized, we havey = HTék and the following equivalence relation :
lm(1-v)=0 & lmw=1 « lim 6, = 0 (15)
Without measurement noise, both methods present encogragsults in terms of
estimation quality concerning the impulse response. lddte fifty coefficients of
the column vectof have been successfully estimated. Without surprise, tHérgu
coefficient identification also yields reasonable resudtshioth methods, in terms of
convergence speed and estimation quality, but with a netdbrantage for the nonlin-
ear LMS approach in terms of convergence speed. This differés shown in figure

4 and is an immediate consequence of the quantized data. afte lsehavior is dis-
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Figure 4: Comparison of nonlinear LMS and LIMBO methods faiffing coefficient
identification.

tinctly observable in figure 5 where the nonlinear LIMBO aggrh stops converging
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after reaching an error level approximately equal to®14nd where the nonlinear LMS
approach converges to the nominal parameters within thislwh finite machine pre-

cision. In order to perturb the data we consider an addit@asSian noise such that the

Quiality of the estimation

——LMS NL
o —— LIMBO NL

Figure 5: Comparison of nonlinear LMS and LIMBO methods imrte of estimation
quality (SNR =co dB).

SNR is set to be 20 dB. The quality of the estimation is illatgtd in figure 6. In this
experiment, the two approaches stop converging after iegetm error level approxi-
mately equal to 10° for LIMBO and 104 for LMS. Although measurement noise has
induced performance degradation, the estimation quadityains appreciable. Once
again, LMS method presents the best results in terms of cgpemee speed but the gap
is slightly reduced.

Finally, let us remember that for LIMBO, unknown parametans updated only
if the instantaneous error defined in (5) is nuk. only if s # &. This ‘change of
sign’ has appeared 458 times in absence of noise and 3715 tuitle a SNR of 20
dB. Consequently, LIMBO seems to give similar performaneg#h a lesser iteration

number than the LMS method, and especially with perturbéal ddéowever, let us bear
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Quality of the estimation

——LMS NL
— LIMBO NL

Figure 6: Comparison of nonlinear LMS and LIMBO methods imrte of estimation
quality (SNR =20 dB).

in mind that contrary to LMS approach, it is not possible tdat any information
concerning the amplitude of the impulse response coefteignLIMBO since® is

normalized.

5 CONCLUSION

In this paper, we have extended the LIMBO method introdundd]iin order to esti-
mate online the parameters of a nonlinear system from biolasgrvations. We have
studied the identification of a weakly nonlinear Duffing dlator that is coupled with
a linear system characterized by a finite impulse responssul®® obtained by sim-
ulations are admirable in terms of convergence speed aimdad&in quality without
measurement noise, and nearly similar to those obtainduithaétLMS method, which
is not based on binary observations, in the noisy case. Quesély, nonlinear LIMBO
is an inexpensive online test method easily implementablmicrofabricated devices

since it only requires the integration of a 1-bit ADC.
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