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Abstract—We consider a multi-cell frequency-selective fading
uplink channel (network MIMO) from K single-antenna user
terminals (UTs) to B cooperative base stations (BSs) with M
antennas each. The BSs, assumed to be oblivious of the applied
codebooks, forward compressed versions of their observations to
a central station (CS) via capacity limited backhaul links. The
CS jointly decodes the messages from all UTs. Since the BSs and
the CS are assumed to have no prior channel state information
(CSI), the channel needs to be estimated during its coherence
time. Based on a lower bound of the ergodic mutual information,
we determine the optimal fraction of the coherence time used
for channel training, taking different path losses between the
UTs and the BSs into account. We then study how the optimal
training length is impacted by the backhaul capacity. Although
our analytical results are based on a large system limit, we show
by simulations that they provide very accurate approximations
for even small system dimensions.

Index Terms—Coordinated Multi-Point (CoMP), network
MIMO, multi-cell processing, channel estimation, imperfect chan-
nel state information (CSI), random matrix theory.

I. INTRODUCTION

NETWORK MIMO has become the synonym for coop-

erative communications in the cellular context and is

regarded as an important concept to boost the interference

limited performance of today’s cellular networks. It is often

also referred to as multi-cell processing or distributed antenna

systems and corresponds to a communication system where

multiple base stations (BSs), connected via high speed back-

haul links to a central station (CS), jointly process data either

received over the uplink or transmitted over the downlink. If

the BSs could cooperate without any restrictions with regards

to the backhaul capacity, processing delay, computing com-

plexity and the availability of channel state information (CSI),

the multi-cell interference channel would be transformed into

a multiple-access (uplink) or broadcast (downlink) channel
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without multi-cell interference. This argument motivated the

concept of network MIMO and it has been shown in many

works, e.g. [1], that BS-cooperation has the potential to realize

significant gains in throughput and reliability.

So far, the treatment of multi-cell cooperation in the lit-

erature has been either information-theoretic but limited to

simple models [2], [3] or based on simulations to account

for more realistic and complex network structures [4], [5],

[6]. The most common and analytically tractable network

models are the Wyner model [7], [8] and the soft hand-off

model [9], [10] which consider cooperation between either

two or three adjacent BSs on an infinite linear or circular

cellular array. Variants of both models have been studied

under various assumptions on the transmission schemes and

the fading characteristics.

In practical systems, perfect BS-cooperation or global pro-

cessing is very difficult, if not impossible, to achieve. The

main limitations are threefold: (i) limited backhaul capacity,

(ii) local connectivity and (iii) imperfect CSI at the CS and

the BSs.1 Therefore, most of the recent research targets the

problem of constrained cooperation. For a detailed overview

of this topic we refer to the surveys [11], [12]. Information-

theoretic implications of limited backhaul capacity have been

studied separately for the uplink and downlink in [13] and [14].

Recently, the optimal amount of user data sharing between the

BSs for the downlink with linear beamforming and backhaul

constraints was studied in [15]. The difficulties related to

connecting a large number of BSs to a single CS have

motivated the study of systems with only locally connected

BSs [10], [16], [17]. Several distributed algorithms for the

uplink [18] and downlink [19], [20] have been proposed and

it was shown that even with local BS connection near-optimal

performance can be achieved with a reasonable amount of

message passing and computational complexity.

One of the most critical limitations of a practical network

MIMO system, somehow overlooked compared to (i) and (ii),

arises from the substantial overhead related to the acquisi-

tion of CSI (iii), indispensable to achieve the full diversity

or multiplexing gains. This overhead becomes paramount,

in particular for fast fading channels, when the number of

antennas, sub-carriers, user terminals (UTs) or BSs grows [21],

[5], [6], [22]. Usually, CSI for the uplink is acquired through

pilot signals sent by the UTs. This implies that a part of the

coherence time of the channel needs to be sacrificed to obtain

1Also the synchronization of the BSs as well as processing complexity and
delay are limiting factors from an implementation perspective but are so far
more or less neglected in the literature.
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CSI with a sufficiently high quality. The inherent tradeoff

between the resources dedicated to channel estimation and data

transmission has been studied for the point-to-point MIMO

channel [23], [24] and the multi-user downlink [25]. Recently,

this problem was also addressed in the context of network

MIMO systems, although with a different focus. In [22],

[5], [6], the authors compare several multi-cellular system

architectures and conclude that the downlink performance of

network MIMO systems is mainly limited by the inevitable

acquisition of CSI (rather than by limited backhaul capacity).

They also demonstrate that a conventional cellular system

might outperform a network MIMO system under some cir-

cumstances assuming that the number of coordinated antennas

and the used training overhead for both systems are the same.

This means in essence that simply installing more antennas

per BS can lead to higher performance improvements than

installing costly backhaul infrastructure.

The imperfections detailed above call for robust strategies

adapted to restricted BS-cooperation. Some schemes [26],

[27] rely on local CSI at the BSs and statistical CSI at the

CS, whereas others [28], [4] consider serving only certain

subsets of UTs with multiple BSs. Several BS-cooperation

schemes have been studied in [29], [30] for the combination

of limited backhaul capacity and imperfect CSI. The problem

of “pilot contamination” caused by non-orthogonal training

sequences in adjacent cells which can lead to significant inter-

cell interference was addressed in [31] and an optimized multi-

cell precoding technique has been proposed.

In this paper, we also consider limited BS-cooperation by

focusing especially on the effects of imperfect CSI (iii). More

precisely, we study the performance of the multi-cell uplink

with partially restricted cooperation assuming that:

• The BSs act as oblivious relays which forward com-

pressed versions of their received signals to the CS via

orthogonal error- and delay-free backhaul links, each of

fixed capacity C bits/channel use.

• The CS estimates the channel based on pilot tones sent

by the UTs.

• The CS jointly processes the received signals from all

BSs.

We consider a lower bound of the normalized ergodic mu-

tual information of the network MIMO uplink channel with

imperfect CSI and limited backhaul capacity, called the net

ergodic achievable rate Rnet(τ). For a given channel coherence

time T , we attempt to find the optimal length τ∗ of the pilot

sequences for channel training which maximizes Rnet(τ). As

this optimization problem is in general intractable, we study a

deterministic approximation Rnet(τ) of Rnet(τ), based on large

random matrix theory.

The main contribution of this work is to show that optimiz-

ing Rnet(τ) instead of Rnet(τ) is optimal in the large system

limit. To this end, we provide a closed-form expression of

the derivative of Rnet(τ) (Theorem 2), prove the concavity of

Rnet(τ) for channel matrices with a doubly regular variance

profile (Theorem 3), and show that τ∗ which maximizes

Rnet(τ) converges to τ∗ in the large system limit (Theorem 4).

We further demonstrate by simulations that our asymptotic

results yield tight approximations for systems of small dimen-

sions with as little as three BSs and UTs. In addition, we

study the effects of limited backhaul capacity on the optimal

channel training length. Since we assume that the CS estimates

all channels based on the compressed observations from the

BSs, the channel estimates are impaired by thermal noise and

quantization errors. Thus, increasing the backhaul capacity

leads to improved channel estimates and, hence, smaller values

of τ∗.

The determination of the optimal training length τ∗ in an

uplink network MIMO setting with arbitrary path loss between

the UTs and BSs and limited backhaul capacity appears to

be a novel result, although we limit our investigation to a

simple setting where B cooperative BSs do not suffer from

interference outside the network. The extension of this work

to more realistic networks, such as clustered systems, is left

to future investigations. Although the use of random matrix

theory in the context of network MIMO is not new, see e.g.

[32], [33], we present a novel application to an optimization

problem in wireless communications.

The paper is structured as follows. The system model,

including compression, channel training and data transmission,

is described in Section II. The net ergodic achievable rate

Rnet(τ) is defined in Section III where we also present the

deterministic approximation Rnet(τ) and discuss the optimiza-

tion of the training length τ . Numerical results and concluding

remarks are given in Sections IV and V, respectively.

Notations: Boldface lowercase and uppercase letters desig-

nate column vectors and matrices, respectively. For a matrix

X, xij or [X]ij denotes the (i, j) entry of X, |X| and trX

denote the determinant and trace and XT and XH denote

the transpose and complex conjugate transpose. For two

matrices X and Y, X ⊗ Y denotes the Kronecker (tensor)

product. We denote an identity matrix of size M as IM and

diag(x1, . . . , xM ) is a diagonal matrix of size M with the

elements xi on its main diagonal. We use x ∼ CN (m,R)
to state that the vector x has a circular symmetric complex

Gaussian distribution with mean m and covariance matrix R.

The natural logarithm is denoted by log(·).

II. SYSTEM MODEL

A. Channel Model

We consider a multi-cell frequency-selective fading uplink

channel from K single-antenna UTs to B BSs with M anten-

nas each.2 A schematic diagram of the channel model for M =
2 is given in Fig. 1. Communication takes place simultaneously

from all UTs to all BSs on L parallel sub-carriers assuming an

orthogonal frequency-division multiplexing (OFDM) transmis-

sion scheme. The stacked receive vector of all BSs on the ℓth
sub-carrier y(ℓ) = [y1(ℓ), . . . , yBM (ℓ)]

T ∈ C
BM

at a given

time reads

y(ℓ) = H(ℓ)x(ℓ) + n(ℓ) (1)

where x(ℓ) = [x1(ℓ), . . . , xK(ℓ)]
T ∈ C

K
is the vector of

the transmitted signals of all UTs on sub-carrier ℓ, n(ℓ) ∼
2Our results can be easily extended to the case where each BS has a different

number of antennas.
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Fig. 1. Schematic system model for M = 2 antennas per BS. The BSs
compress and forward their received signals to the CS via orthogonal backhaul
links of capacity C bits/channel use. The CS jointly processes the received
data from all BSs.

CN (0, IBM ) is a vector of additive noise and H(ℓ) ∈
C

BM×K
is the aggregated channel matrix from all UTs to

all BSs on the ℓth sub-carrier.

We consider a discrete-time block-fading channel model

where the channel remains constant for a coherence block of

T channel uses and then changes randomly from one block

to the other. We let T = TcWc, where Wc is the bandwidth

per sub-carrier in Hz and Tc the channel coherence time in

seconds. Presuming that the bandwidth of each sub-carrier Wc

is on the order of the channel coherence bandwidth, that the

antenna spacing at the BSs is sufficiently large and that the

channels from the UTs to the BSs are uncorrelated, the channel

matrices Hb(ℓ) ∈ C
M×K

, b = 1, . . . , B, from the UTs to the

BSs can be modeled as

Hb(ℓ) = Wb(ℓ) diag (
√
ab1, . . . ,

√
abK) (2)

where Wb(l) ∈ C
M×K

is a standard complex Gaussian matrix

and abk denotes the inverse path loss between UT k and BS

b.3 For later use, we define the matrix V ∈ R
BM×K
+ in the

following way:

V = A⊗ 1M (3)

where A ∈ R
B×K
+ is the inverse path loss matrix with

elements {abk} and 1M is a M -dimensional column vector

with all entries equal to one, such that the elements {vij}
of V satisfy vij = a⌈M

i
⌉j . Under these assumptions, the

elements {hij(ℓ)} of the matrix H(ℓ) are independent circular

symmetric complex Gaussian random variables with zero

mean and variance vij , i.e., hij(ℓ) ∼ CN (0, vij). We refer

to V as the variance profile of the channel matrix H(l) and

assume in the sequel that V is perfectly known at the CS

while each BS b only knows the distribution of its local

channels Hb(ℓ), ℓ = 1, . . . , L. In a practical system, the

channel coherence bandwidth might be significantly larger

3Note that the path loss is independent of the sub-carrier index ℓ. This
might not be the case for extremely large bandwidth but it is a reasonable
assumption for most practical scenarios.

than the bandwidth of a sub-carrier so that {hij(ℓ)} would

exhibit some correlation with respect to ℓ. From a channel

estimation perspective, the assumption of i.i.d. channel coef-

ficients represents a worst case since sub-carrier correlation

cannot be exploited in the estimation process.

For simplicity, we assume Gaussian signaling with uniform

power allocation, i.e., xk(ℓ) ∼ CN (0, P/L), i.i.d. over ℓ and

k, which is not necessarily optimal in the presence of channel

estimation errors [34], [23]. Although optimal power allocation

over the sub-carriers would provide significant gains, it would

require perfect channel knowledge at the UTs or some sort of

feedback from the BSs/CS. Since we assume neither feedback

nor CSI at the UTs and since the channel statistics are the

same for all sub-carriers, uniform power allocation seems to

be a reasonable choice.

B. Compression at the BSs

The BSs are assumed to be oblivious to the applied code-

books of the UTs and forward compressed versions y′i(ℓ) of

their received signal sequences yi(ℓ) to the CS via orthogonal

backhaul links, each of capacity C bits per channel use.4

We also assume that the BSs and the CS have no prior

knowledge of the instantaneous channel realizations. Under

this setting, we consider a simple, sub-optimal compression

scheme which neither exploits correlations between the re-

ceived signals at different antennas nor adapts the employed

quantization codebook to the actual channel realization. Thus,

a single quantization codebook for the compression of each

sequence yi(ℓ) is used. This is in contrast to existing works,

e.g. [35], which rely on the assumption of full CSI at the

BSs and the CS to apply optimized and channel dependent

compression schemes. For a detailed discussion of different

(distributed) compression schemes, we refer to [35], [36], [30]

and references therein.

The rate-distortion function for the source yi(ℓ) with

squared error distortion is given as [37, Theorem 10.2.1]

RD

(

σ2
i (ℓ)

)

= min
fy′

i
(ℓ)|yi(ℓ)

:

E[|y′
i(ℓ)−yi(ℓ)|

2]≤σ2
i (ℓ)

I (y′i(ℓ); yi(ℓ)) (4)

where the minimization is over all conditional probability

density functions fy′
i
(ℓ)|yi(ℓ) satisfying the expected distortion

constraint σ2
i (ℓ). Similar to the so-called “elementary com-

pression scheme” in [35], our compression scheme is based

on an underlying complex Gaussian “test channel” defined by

y′i(ℓ) = yi(ℓ) + qi(ℓ) (5)

where qi(ℓ) ∼ CN (0, σ2
i (ℓ)). Note that the test channel (5)

used for the generation of the quantization codebooks is not

optimal since the distribution of yi(ℓ) =
∑K

j=1 hij(ℓ)xj(ℓ) +
ni(ℓ) is not Gaussian. However, one can argue that in a large

system with many UTs, the random variable yi(ℓ) is almost

Gaussian distributed and the performance degradation due to

4By orthogonal backhaul links we mean here that there is no inter-backhaul
interference. This is for example the case for a wired backhaul network with
a dedicated link between the CS and each BS.
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the sub-optimal choice of fy′
i
(ℓ)|yi(ℓ) is small. A simple upper

bound of the rate distortion function is given by

I(y′i(ℓ); yi(ℓ)) = h(y′i(ℓ))− h(y′i(ℓ)|yi(ℓ))
≤ log

(

πe
(

E

[

|yi(ℓ)|2
]

+ σ2
i (ℓ)

))

− log
(

πeσ2
i (ℓ)

)

= log

(

1 +
1 + P

L

∑K
j=1 vij

σ2
i (ℓ)

)

(6)

where the inequality is obtained by upper-bounding the en-

tropy of y′i(ℓ) by the entropy of a complex Gaussian random

variable with the same variance. We assume further that each

BS uses C/(ML) bits for the compression of each received

complex symbol per antenna per sub-carrier. Replacing the

left-hand side (LHS) of (6) by C/(ML), we can consequently

overestimate the quantization noise variance σ2
i (ℓ) by choosing

σ2
i = σ2

i (ℓ) =
1 + P

L

∑K
j=1 vij

2
C

ML − 1
. (7)

Since the statistical distribution of yi(ℓ) is the same for all sub-

carriers, the quantization noise power σ2
i is also independent

of ℓ. One can easily verify that the quantization noise vanishes

for infinite backhaul capacity, i.e., σ2
i → 0 for C → ∞, and

grows without bounds when the backhaul has zero capacity,

i.e., σ2
i → ∞ for C → 0.

We would like to point out that the field of distributed com-

pression with imperfect CSI is to the best of our knowledge

a largely unexplored area. It is for example not clear if each

BS should estimate its local channels and forward compressed

versions of its estimates to the CS or if the CS should estimate

all channels based on compressed signals from the BSs, as

assumed in this work.

C. Channel Training

Similar to [23], each channel coherence block of length T
is split into a phase for channel training and a phase for data

transmission. During the training phase of length τ , all K
UTs broadcast orthogonal sequences of known pilot symbols

of equal power P/L on all sub-carriers. The orthogonality of

the training sequences imposes τ ≥ K. We assume that the CS

estimates the channels hij(ℓ) from all UTs to all BSs based

on the observations

rij(ℓ) =

√

τP

L
hij(ℓ) + sij(ℓ) (8)

where sij(ℓ) ∼ CN (0, 1 + σ2
i ) captures the effects of the

thermal noise at the BS-antennas and the quantization error on

the backhaul links. For details on how the scalar estimation

channel (8) is obtained, we refer the reader to [23]. It be-

comes clear from the last equation that the quantization noise

degrades the channel estimate. Thus, the backhaul capacity C
has a significant influence on the optimal training length τ∗.

This point will be further discussed in Section IV. Computing

the minimum mean square error (MMSE) estimate of hij(ℓ)
given the observation rij(ℓ), we can decompose hij(ℓ) into the

estimate ĥij(ℓ) and the independent estimation error h̃ij(ℓ),
such that

hij(ℓ) = ĥij(ℓ) + h̃ij(ℓ). (9)

The variance of the estimated channel v̂ij(τ) and the variance

of the estimation error ṽij(τ) are respectively given as

v̂ij(τ)
△
= E

[

|ĥij(ℓ)|2
]

=
τ P

L
v2ij

τ P
L
vij + 1 + σ2

i

∀ℓ (10)

ṽij(τ)
△
= E

[

|h̃ij(ℓ)|2
]

=
vij(1 + σ2

i )

τ P
L
vij + 1 + σ2

i

∀ℓ. (11)

Denote V̂(τ) and Ṽ(τ) the variance profiles of the estimated

channel Ĥ(ℓ) and the estimation error H̃(ℓ), respectively.

One can easily verify that the total energy of the channel is

conserved since

V = V̂(τ) + Ṽ(τ) . (12)

D. Data Transmission

In each channel coherence block, the UTs broadcast their

data simultaneously during T − τ channel uses. The CS

jointly decodes the messages from all UTs, leveraging the

previously computed channel estimate Ĥ(ℓ). With the knowl-

edge of Ĥ(ℓ), the CS “sees” in its received signal y′(ℓ) =
[y′1(ℓ), . . . , y

′
BM (ℓ)]

T
the useful term Ĥ(ℓ)x(l) and the overall

noise term z(ℓ) = H̃(ℓ)x(ℓ) + n(ℓ) + q(ℓ), i.e.,

y′(ℓ) = Ĥ(ℓ)x(ℓ) + z(ℓ) (13)

where the quantization noise vector q = [q1(ℓ), . . . , qBM (ℓ)]
T

is defined by (5). Since the statistical distributions of all sub-

carriers, signals and noise are i.i.d. with respect to the index

ℓ, we will hereafter omit the dependence on ℓ and consider a

single isolated sub-carrier.

III. NET ERGODIC ACHIEVABLE RATE

The capacity of the channel (13) is not explicitly known.

We consider therefore a lower bound of the normalized ergodic

mutual information 1
BM

I
(

y′;x|Ĥ
)

, referred to hereafter as

the ergodic achievable rate R(τ). This lower bound is in

essence obtained by overestimating the detrimental effect

of the estimation error, treating the total noise term z as

independent complex Gaussian noise with covariance matrix

Kz(τ) ∈ R
BM×BM
+ , given as

Kz(τ) = E

[

zzH
]

= diag



1 + σ2
i +

P

L

K
∑

j=1

ṽij(τ)





BM

i=1

. (14)

Thus, the ergodic achievable rate can be written as [34], [23]

R(τ) =
1

BM
EĤ

[

log

∣

∣

∣

∣

IBM +
P

L
H(τ)H(τ)H

∣

∣

∣

∣

]

(15)

where we have defined the effective channel H(τ) as

H(τ) = K
− 1

2
z (τ)Ĥ. (16)

Note that the ergodic achievable rate does not account for

the fact that only a fraction (1− τ/T ) of the total coherence

block length can be used for data transmission. Our goal is



HOYDIS et al.: OPTIMAL CHANNEL TRAINING IN UPLINK NETWORK MIMO SYSTEMS 5

thus to find the optimal training length τ∗, maximizing the net

ergodic achievable rate

Rnet(τ)
△
=

(

1− τ

T

)

R(τ). (17)

Here, the difficulty consists in computing the ergodic achiev-

able rate R(τ) explicitly. Since a closed-form expression of

R(τ) for finite dimensions of the channel matrix H seems

intractable, we resort to an approximation based on the theory

of large random matrices. We will demonstrate shortly that

this approximation, although only asymptotically tight, yields

very close approximations for even small values of B, M , K
and L.

A. Deterministic Equivalent

In this section, we present a deterministic equivalent ap-

proximation R(τ) of R(τ) in the large system limit, i.e., for

K,BM,L → ∞ at the same speed. Denote N = BM the

product of the number of BSs and the number of antennas

per BS. The notation K → ∞ will refer in the sequel to the

following two conditions on K,N and L:

0 < lim inf
K→∞

N

K
≤ lim sup

K→∞

N

K
< ∞

0 < lim inf
K→∞

L

K
≤ lim sup

K→∞

L

K
< ∞. (18)

Define V(τ) = K−1
z (τ)V̂(τ) the variance profile of the

effective channel H(τ) with elements

vij(τ) =
v̂ij(τ)

1 + σ2
i +

P
L

∑K
ℓ=1 ṽiℓ(τ)

(19)

and consider the following N ×N matrices

Dj(τ) = diag (v1j(τ), . . . , vNj(τ)) , j = 1, . . . ,K. (20)

Denote by C+ = {z ∈ C : Im(z) > 0}, and by S the class of

functions f analytic over C\R+, such that for z ∈ C+, f(z) ∈
C+ and zf(z) ∈ C+, and limy→∞ −iyf(iy) = 1, where

i =
√
−1.5 We are now in position to state the deterministic

approximation R(τ) of R(τ) based on a direct application of

[39, Theorem 2.3] (see also [38, Theorems 2.4 and 4.1]) to

our channel model.

Theorem 1 (Deterministic Equivalent): Let τ > 0. Assume

that K, N and L satisfy (18) and 0 ≤ vij(τ) < vmax <
∞∀i, j. Then:

(i) The following implicit equation:

T(z) =





1

K

K
∑

j=1

Dj(τ)

1 + 1
K

trDj(τ)T(z)
− zIN





−1

(21)

admits a unique solution T(z) =
diag (t1(z), . . . , tN (z)) such that (t1(z), . . . , tN (z)) ∈
SN .

5Such functions are known to be Stieltjes transforms of probability mea-
sures over R+ - see for instance [38, Proposition 2.2].

(ii) Let P > 0. Denote TP = T(− L
KP

) and consider the

quantity:

R(τ) =
1

N

K
∑

j=1

log

(

1 +
1

K
trDj(τ)TP

)

− 1

N
log det

(

L

KP
TP

)

− 1

N

K
∑

j=1

1
K

trDj(τ)TP

1 + 1
K

trDj(τ)TP

. (22)

Then, the following holds true:

R(τ)−R(τ) −−−−→
K→∞

0. (23)

B. Optimization of the training length τ

In this section, we consider the optimization of the training

length τ with the goal of maximizing the net ergodic achiev-

able rate Rnet(τ). In order to find the optimal training length

τ∗ for a given coherence block length T , we wish to solve the

following optimization problem:

maximize Rnet(τ) (24)

subject to K ≤ τ ≤ T.

As this optimization problem is intractable for finite dimen-

sions, we pursue the following approach:

1) We find τ∗ maximizing the deterministic approximation

Rnet(τ) =
(

1− τ
T

)

R(τ).
2) We show that Rnet(τ

∗)−Rnet(τ
∗) → 0 and τ∗−τ∗ → 0

as K → ∞.

3) We verify by simulations that τ∗ is very close to τ∗ for

even small values of K,N and L.

We start by establishing the concavity of Rnet(τ), our new

objective function. Denote6

v′ij(τ) =

v̂′ij(τ)
[

1 + σ2
i +

P
L

∑K
j=1 ṽij(τ)

]

− v̂ij(τ)
P
L

∑K
j=1 ṽ

′
ij(τ)

[

1 + σ2
i +

P
L

∑K
j=1 ṽij(τ)

]2

(25)

where

v̂′ij(τ) = −ṽ′ij(τ) =
P
L
v2ij
(

1 + σ2
i

)

(

1 + σ2
i + τ P

L
vij
)2 (26)

and define the matrices

D′
j(τ) = diag

(

v′1j(τ), . . . , v
′
Nj(τ)

)

, j = 1, . . . ,K. (27)

A simple composition rule [40, Exercise 3.32 (b)] states that

the product of a positive decreasing linear function and a

positive increasing concave function is also concave. In order

to prove the concavity of Rnet(τ) = (1 − τ
T
)R(τ), it is thus

sufficient to show that R(τ) is an increasing concave function

in τ . A sufficient condition for concavity is R
′′
(τ) ≤ 0. We

6We use f ′(x) to denote the first derivative of the function f(x), i.e.,

f ′(x) =
d f(x)
d x

.
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begin by considering the first derivative R
′
(τ), which allows

for a simple concise closed-from expression as provided by

the next theorem:

Theorem 2 (Derivative): Under the same conditions as for

Theorem 1, the first derivative of R(τ) permits the explicit

expression

R
′
(τ) =

1

N

K
∑

j=1

1
K

trD′
j(τ)TP

1 + 1
K

trDj(τ)TP

(28)

where TP = T(− L
KP

) is given by Theorem 1 (i). Moreover,

for any P, τ > 0, R(τ) is an increasing function, i.e.,

R
′
(τ) > 0. (29)

Proof: See Appendix A.

Despite the simplicity of the expression of R
′
(τ) in The-

orem 2, it seems intractable to show that R
′′

net(τ) ≤ 0 for

channel matrices with a general variance profile. This is due

to the fact that not only Dj(τ) depends on τ , but also TP . The

matrix TP is in general given as the solution of an implicit

equation which can only be determined numerically, e.g. by a

fixed-point algorithm. It is thus difficult to infer the behavior of

TP with respect to τ . However, one can show for the particular

case of a doubly regular variance profile that R(τ) is indeed

concave.

Theorem 3 (Concavity): Let P, τ > 0. Assume that N = K
and that V(τ) is a doubly regular matrix which satisfies the

following regularity condition:

K(τ) =
1

N

N
∑

i=1

vik(τ) =
1

N

N
∑

j=1

vℓj(τ) ∀k, ℓ. (30)

Then, R(τ) is a strictly concave function.

Proof: See Appendix B.

Remark 3.1: Based on our simulation results, we con-

jecture that Theorem 3 also holds for non doubly regular

variance profiles V(τ). Intuitively, R(τ) being a concave

function means nothing else than that channel training shows

diminishing returns. That is, the marginal benefit of each train-

ing symbol decreases until the channel estimation becomes

nearly perfect. The previous argument can be made clear

considering the two extreme cases τ = 0 and τ → ∞. One

can easily verify that Dj(0) = 0 while D′
j(0) > 0. This

implies R
′
(0) > 0, i.e., channel training increases the ergodic

achievable rate. On the other hand, as τ → ∞, D′
j(τ) → 0,

so that also R
′
(τ) → 0, i.e., the marginal benefit of channel

training vanishes. It is thus justified to conjecture that R
′
(τ) is

a decreasing function of τ and hence R(τ) a concave function.

As a consequence of Theorem 3 and Remark 3.1, we assume

that Rnet(τ) takes its global maximum in (0, T ] and the optimal

training length τ∗ can be determined as the solution of

R
′

net(τ) =
(

1− τ

T

)

R
′
(τ)− 1

T
R(τ) = 0. (31)

The value τ∗ can now be easily found, e.g. via the bisection

method. It remains to show that the optimal training length

τ∗ which maximizes Rnet(τ) is asymptotically optimal for the

original objective function Rnet(τ). This is done in the next

theorem.

Theorem 4 (Convergence): Let τ∗ =
argmaxτ∈[0,T ] Rnet(τ) and τ∗ = argmaxτ∈[0,T ] Rnet(τ).
Then, under the same conditions as for Theorem 1, the

following holds true:

(i)

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0. (32)

(ii) Further assume that V(τ) is a doubly regular matrix

which satisfies the conditions of Theorem 3. Then,

τ∗ − τ∗ −−−−→
K→∞

0 (33)

where τ∗ is given as the solution to

R
′

net(τ) =
(

1− τ

T

)

R
′
(τ)− 1

T
R(τ) = 0 (34)

with R(τ) and R
′
(τ) given by Theorem 1 (ii) and

Theorem 2, respectively.

Proof: See Appendix C.

Theorem 4 (i) merely states that the maximum point of

Rnet(τ) can be arbitrarily closely approximated by the max-

imum point of Rnet(τ). This result is independent of the

structure of the variance profile V(τ). Theorem 4 (ii) provides

a simple way to compute τ∗ and states that this value is

also asymptotically optimal for Rnet(τ). However, this result

requires V(τ) to be a doubly regular matrix. Both results

together imply that optimizing Rnet(τ) is asymptotically iden-

tical to optimizing Rnet(τ). We show in the next section via

simulations that Theorem 3 and Theorem 4 also hold for non

doubly regular variance profiles.

IV. NUMERICAL RESULTS

In order to show the validity of our analysis in the preceding

sections, we consider a simple cellular system consisting of

B = 3 BSs with M = 2 antennas and K = 3 UTs, as shown

in Fig. 2. The locations of the UTs are randomly chosen

according to a uniform distribution. The inverse path loss

factor abk between UT k and BS b is given as abk = d−3.6
bk ,

where dbk is the distance between UT k and BS b, normalized

to the maximum distance within a cell. We consider one

random snapshot of user distributions, resulting in the inverse

path loss matrix

A =





2.9775 0.0385 1.6055
0.2512 2.7826 0.1759
0.0615 0.0492 1.6376



 . (35)

In the sequel, we assume A fixed while we average over

many independent realizations of the channel matrix H.

The cell edge signal-to-noise-ratio is defined as SNR =

E

[

|xi(ℓ)|2
]

/E
[

|ni(ℓ)|2
]

= P/L. Unless otherwise stated, we

assume T = 1000 and L = 1.

Fig. 3 depicts the net ergodic achievable rate Rnet(τ) and

its deterministic equivalent approximation Rnet(τ) by The-

orem 1 (ii) as a function of the SNR for a fixed training

length of τ = 40 and different values of the backhaul capacity

C = {1, 5, 10} bits/channel use. Clearly, Rnet(τ) gives a very
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Fig. 2. Cellular example with B = 3 BSs and K = 3 UTs.

tight approximation of Rnet(τ) over the full range of SNR.

The effect of limited backhaul is particularly visible at high

SNR where all curves saturate.

For the same set of parameters and SNR = 0 dB, we show

in Fig. 4 Rnet(τ) and Rnet(τ) as a function of the training

length τ . This plot validates Theorem 3 and the corresponding

remark as Rnet(τ) is obviously a concave function. Moreover,

since the curves of Rnet(τ) and Rnet(τ) match very closely, it

is reasonable to assume that both take a similar maximum

value at a similar value of τ . The validity of Theorem 4

is demonstrated in Fig. 5 which shows the optimal training

length τ∗, found by an exhaustive search based on Monte

Carlo simulations, and the training length τ∗ which maximizes

Rnet(τ) as a function of the SNR for C = 1 bits/channel use

and T = 100. The differences between both values, although

very small, are mainly due to the exhaustive search over a

necessarily discrete set of values of τ .

Fig. 6 shows the dependence of the optimal training length

τ∗ on the backhaul capacity C for a fixed SNR = 10 dB. One

can see that τ∗ is a decreasing function of C which converges

quickly to particular value corresponding to infinite capacity

backhaul links. The reason for this is the following. The

CS estimates the channel coefficients based on the quantized

training signals received by the BSs. The channel estimate

is hence impaired by thermal noise and quantization errors.

Therefore, increasing C results in better channel estimates and

reduces the necessary training length. For infinite backhaul

capacity, the optimal training length is only dependent on the

SNR. In a similar flavor, Fig. 7 depicts Rnet(τ
∗) as a function

of the backhaul capacity C. We notice the inefficient utilization

of the backhaul links due to sub-optimal compression since the

net ergodic achievable rate per BS, i.e., M×Rnet(τ
∗), is much

lower than the necessary backhaul capacity. For example, it

takes C = 20 bits/channel use of backhaul capacity to achieve

a rate per BS of 2×Rnet(τ
∗) ≈ 5.2 bits/channel use.

V. CONCLUSION

In this work, we have considered a frequency-selective fad-

ing network MIMO uplink channel with arbitrary path losses

between the UTs and BSs and finite capacity backhaul links.

Using a close approximation of the net ergodic achievable rate

based on random matrix theory, we have studied the optimal
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Fig. 3. Net ergodic achievable rate Rnet(τ) vs SNR for τ = 40 and T =
1000. The markers are obtained by simulations, the solid lines correspond to
the deterministic equivalent Rnet(τ).
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Fig. 7. Net ergodic achievable rate Rnet(τ∗) with optimal channel training
τ∗ vs backhaul capacity C for SNR = 10 dB and T = 1000.

tradeoff between the resources used for channel training and

data transmission. Although the asymptotic results are proved

to be tight only in the large system limit, our numerical

examples show that they provide close approximations even

for small system dimensions. Our results also show that limited

backhaul capacity has a significant impact on the optimal

training length. We wish to conclude the paper by pointing

out some shortcomings of our system model which remain as

future investigations.

1) Backhaul links and cooperation: A relevant question is

how a BS should decide whether to cooperate by forwarding

its received data to some central processor or to process its re-

ceived signals alone. In our model, the net throughput vanishes

with a decreasing backhaul capacity although each BSs could

theoretically decode a part of the received messages alone.

Future work, also motivated by the recent results in [30], [41],

comprises the investigation of flexible schemes which adapt

the degree of cooperation according to some statistical side-

information about the channels, backhaul limitations, quality

of CSI, etc.

2) Inter-cluster interference: We have considered a multi-

cell network composed of B cooperative cells without inter-

cell interference. In a real system, also the effects of non-

orthogonal training sequences leading to “pilot contamination”

[31], [21] constitute an important issue for practical system

design. Both aspects need to be taken into account for a more

realistic performance evaluation of network MIMO systems.

APPENDIX A

PROOF OF THEOREM 2

We start by defining the following auxiliary variables δj =
1
K

trDj(τ)TP , j = 1, . . . ,K. Using this definition, we can

re-write R(τ) in (22) as

R(τ) =
1

N

K
∑

j=1

[

log(1 + δj)−
δj

1 + δj

]

− 1

N
log det

(

L

KP
TP

)

. (36)

We define δ′j =
d δj
d τ

= 1
K

trD′
j(τ)TP + 1

K
trDj(τ)T

′
P , where

T′
P = d

d τ
TP . Taking the derivative of R(τ) with respect to

τ yields

R
′
(τ) =

1

N

K
∑

j=1

[

δjδ
′
j

(1 + δj)2

]

− 1

N
trT−1

P T′
P . (37)

This expression can be further simplified by re-writing the

definition of TP as a function of δj :

TP =





L

KP
IN +

1

K

K
∑

j=1

Dj(τ)

1 + δj





−1

. (38)

Using this expression, we have

trT−1
P T′

P

= −trT−1
P TP

d

d τ





L

KP
IN +

1

K

K
∑

j=1

Dj(τ)

1 + δj



TP

= −trTP





1

K

K
∑

j=1

(1 + δj)D
′
j(τ)− δ′jDj(τ)

(1 + δj)2





=

K
∑

j=1

δ′jδj − (1 + δj)
1
K

trD′
j(τ)TP

(1 + δj)2
(39)

Plugging this expression into (37) and replacing δj by
1
K

trDj(τ)TP leads to

R
′
(τ) =

1

N

K
∑

j=1

1
K

trD′
j(τ)TP

1 + 1
K

trDj(τ)TP

. (40)

In [39, Proposition 5.3], it is proved that

(

L

KP
+max

i,j
vij(τ)

)−1

≤ [TP ]ii ≤
KP

L
. (41)

Since both vij(τ) and v′ij(τ) are positive for τ, P > 0, it fol-

lows from (41) that 1
K

trD′
j(τ)TP > 0 and 1

K
trDj(τ)TP >

0. This implies R
′
(τ) > 0 which concludes the proof.
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APPENDIX B

PROOF OF THEOREM 3

We want to show that R
′′
(τ) < 0. Under the assumption

of a doubly regular variance profile matrix V(τ), the implicit

matrix equation T(z) (21) of Theorem 1 (i) reduces to a scalar

equation, such that T(z) = t(z)IN , where

t(z) =
1

−z + K(τ)
1+K(τ)t(z)

. (42)

The unique solution to this equation (such that t(z) ∈ S) can

be given in closed-form as

t(z) =

√

1− K(τ)
z

− 1

2K(τ)
. (43)

Let tP = t(− L
KP

). By Theorem 2, the first derivative of R(τ)
can be written as

R
′
(τ) =

1

N

N
∑

j=1

1
N

trD′
j(τ)tP

1 + 1
N

trDj(τ)tP
=

tPK′(τ)

1 + tPK(τ)
(44)

where K′(τ) = d
d τ

K(τ). The second derivative is given as

R
′′
(τ) =

t′PK′(τ) + tPK′′(τ)[1 + tPK(τ)]− [tPK′(τ)]2

[1 + tPK(τ)]2
.

(45)

We now need to verify that the numerator of the last equation

is negative. One can easily verify from (25) and (26) that

K′(τ) > 0 and it follows from (41) that tP > 0. It remains to

check that t′P < 0 and K′′(τ) < 0. Write therefore tP as

tP =

√

1 + KP
L

K(τ)− 1

2K(τ)
=

KP

2L
(
√

1 + KP
L

K(τ) + 1
)

(46)

which is a strictly decreasing function of τ since K′(τ) > 0.

Hence, we have that t′P < 0. In order to show that K′′(τ) < 0,

define the two auxiliary functions K̂(τ) = 1
N

∑N
i=1 v̂ij(τ)

and K̃(τ) = 1
N

∑N
i=1 ṽij(τ) which are independent of the

column index j. It is a simple exercise to verify that v̂ij(τ) are

positive increasing concave functions and ṽij(τ) are positive

decreasing convex functions. Due to the regularity conditions

of the variance profile, one can verify from (7) that the

quantization noise σ2
i is the same for all BS-antennas, i.e.,

σi = σ2. Thus,

K(τ) =
1

N

N
∑

i=1

vij(τ) =
1

N

N
∑

i=1

v̂ij(τ)

1 + σ2 + PN
L

K̃(τ)

=
K̂(τ)

1 + σ2 + PN
L

K̃(τ)
(47)

Since both K̂(τ) and (1 + σ2 + PN
L

K̃(τ))−1 are positive

increasing concave functions, it follows from [40, Exercise

3.32 (b)] that the same holds also for their product. Hence,

K′′(τ) < 0 and, thus, R
′′
(τ) < 0.

APPENDIX C

PROOF OF THEOREM 4

We expand the difference Rnet(τ
∗)−Rnet(τ

∗) as follows:

Rnet(τ
∗)−Rnet(τ

∗) =
[

Rnet(τ
∗)−Rnet(τ

∗)
]

+
[

Rnet(τ
∗)−Rnet(τ

∗)
]

+
[

Rnet(τ
∗)−Rnet(τ

∗)
]

. (48)

From Theorem 1 (ii), we have that the first and last term of

the right-hand side (RHS) of (48) vanish asymptotically, i.e.,

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0 (49)

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0. (50)

By the definition of τ∗ and τ∗, we have for the LHS of (48)

and the second term on the RHS of (48)

Rnet(τ
∗)−Rnet(τ

∗) ≥ 0, Rnet(τ
∗)−Rnet(τ

∗) ≤ 0. (51)

Equations (48), (49), (50), and (51) together imply that

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0 (52)

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0. (53)

Equation (52) together with Theorem 1 (ii) proofs the first part

of the theorem. Assume now that V(τ) is a doubly regular

matrix. Since Rnet(τ) is by Theorem 3 a strictly concave

function which takes its unique maximum at point τ∗, (53)

implies that τ∗ − τ∗ → 0 as K → ∞.
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