L. Cobb, C. Fahrenbruch, T. Walsh, M. Copass, M. Olsufka et al., Influence of Cardiopulmonary Resuscitation Prior to Defibrillation in Patients With Out-of-Hospital Ventricular Fibrillation, JAMA, vol.281, issue.13, pp.1182-1188, 1999.
DOI : 10.1001/jama.281.13.1182

L. Wik, T. Hansen, F. Fylling, T. Steen, P. Vaagenes et al., Delaying Defibrillation to Give Basic Cardiopulmonary Resuscitation to Patients With Out-of-Hospital Ventricular Fibrillation, JAMA, vol.289, issue.11, pp.1389-95, 2003.
DOI : 10.1001/jama.289.11.1389

C. Brown and R. Dzwonczyk, Signal Analysis of the Human Electrocardiogram During Ventricular Fibrillation: Frequency and Amplitude Parameters as Predictors of Successful Countershock, Annals of Emergency Medicine, vol.27, issue.2, pp.184-192, 1996.
DOI : 10.1016/S0196-0644(96)70346-3

H. Strohmenger, T. Eftestol, K. Sunde, V. Wenzel, M. Mair et al., The Predictive Value of Ventricular Fibrillation Electrocardiogram Signal Frequency and Amplitude Variables in Patients with Out-Of-Hospital Cardiac Arrest, Anesthesia & Analgesia, vol.93, issue.6, pp.1428-1433, 2001.
DOI : 10.1097/00000539-200112000-00016

L. Sherman, T. Rea, J. Waters, J. Menegazzi, and C. Callaway, Logarithm of the absolute correlations of the ECG waveform estimates duration of ventricular fibrillation and predicts successful defibrillation, Resuscitation, vol.78, issue.3, pp.346-354, 2008.
DOI : 10.1016/j.resuscitation.2008.04.009

A. Neurauter, T. Eftestol, J. Kramer-johansen, B. Abella, K. Sunde et al., Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks, Resuscitation, vol.73, issue.2, pp.253-63, 2007.
DOI : 10.1016/j.resuscitation.2006.10.002

A. Neurauter, J. Kramer-johansen, J. Eilevstjonn, H. Myklebust, V. Wenzel et al., Estimation of the duration of ventricular fibrillation using ECG single feature analysis, Resuscitation, vol.73, issue.2, pp.246-252, 2007.
DOI : 10.1016/j.resuscitation.2006.08.028

T. Olasveengen, T. Eftestol, K. Gundersen, L. Wik, and K. Sunde, Acute ischemic heart disease alters ventricular fibrillation waveform characteristics in out-of hospital cardiac arrest, Resuscitation, vol.80, issue.4, pp.412-419, 2009.
DOI : 10.1016/j.resuscitation.2009.01.012

K. Gundersen, J. Kvaloy, J. Kramer-johansen, and T. Eftestol, Identifying approaches to improve the accuracy of shock outcome prediction for out-of-hospital cardiac arrest, Resuscitation, vol.76, issue.2, pp.279-284, 2008.
DOI : 10.1016/j.resuscitation.2007.07.019

C. Brown, R. Griffith, P. Van-ligten, J. Hoekstra, G. Nejman et al., Median frequency ??? a new parameter for predicting defibrillation success rate, Annals of Emergency Medicine, vol.20, issue.7, pp.787-789, 1991.
DOI : 10.1016/S0196-0644(05)80843-1

H. Povoas, M. Weil, W. Tang, J. Bisera, K. Klouche et al., Predicting the success of defibrillation by electrocardiographic analysis, Resuscitation, vol.53, issue.1, pp.77-82, 2002.
DOI : 10.1016/S0300-9572(01)00488-9

C. Callaway, L. Sherman, V. Mosesso, T. Dietrich, E. Holt et al., Scaling Exponent Predicts Defibrillation Success for Out-of-Hospital Ventricular Fibrillation Cardiac Arrest, Circulation, vol.103, issue.12, pp.1656-1661, 2001.
DOI : 10.1161/01.CIR.103.12.1656

J. Menegazzi, C. Callaway, L. Sherman, D. Hostler, H. Wang et al., Ventricular Fibrillation Scaling Exponent Can Guide Timing of Defibrillation and Other Therapies, Circulation, vol.109, issue.7, pp.926-957, 2004.
DOI : 10.1161/01.CIR.0000112606.41127.D2

M. Podbregar, M. Kovacic, A. Podbregar-mars, and M. Brezocnik, Predicting defibrillation success by ???genetic??? programming in patients with out-of-hospital cardiac arrest, Resuscitation, vol.57, issue.2, pp.153-162, 2003.
DOI : 10.1016/S0300-9572(03)00030-3

L. Lin, M. Lo, P. Ko, C. Lin, W. Chiang et al., Detrended fluctuation analysis predicts successful defibrillation for out-of-hospital ventricular fibrillation cardiac arrest, Resuscitation, vol.81, issue.3, pp.297-301, 2010.
DOI : 10.1016/j.resuscitation.2009.12.003

C. Peng, S. Havlin, H. Stanley, and A. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.5, issue.1, pp.82-89, 1995.
DOI : 10.1063/1.166141

J. Watson, N. Uchaipichat, P. Addison, G. Clegg, C. Robertson et al., Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods, Resuscitation, vol.63, issue.3, pp.269-75, 2004.
DOI : 10.1016/j.resuscitation.2004.06.012

A. Amann, K. Rheinberger, U. Achleitner, A. Krismer, W. Lingnau et al., The prediction of defibrillation outcome using a new combination of mean frequency and amplitude in porcine models of cardiac arrest, Anesthesia and Analgesia, vol.95, issue.3, pp.716-738, 2002.

K. Gundersen, J. Kvaloy, J. Kramer-johansen, T. Olasveengen, J. Eilevstjonn et al., Using within-patient correlation to improve the accuracy of shock outcome prediction for cardiac arrest, Resuscitation, vol.78, issue.1, pp.46-51, 2008.
DOI : 10.1016/j.resuscitation.2008.02.018

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2009.

T. Eftestol, H. Losert, J. Kramer-johansen, L. Wik, F. Sterz et al., Independent evaluation of a defibrillation outcome predictor for out-of-hospital cardiac arrested patients, Resuscitation, vol.67, issue.1, pp.55-61, 2005.
DOI : 10.1016/j.resuscitation.2005.05.006

M. Sarah and S. Médical, 4 rue L. Pasteur, F-67160 Wissembourg