Functional approximation and dynamic programming, Mathematical Tables and Other Aids to Computation, pp.247-251, 1959. ,
Parametric value function approximation: A unified view, 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp.9-16, 2011. ,
DOI : 10.1109/ADPRL.2011.5967355
URL : https://hal.archives-ouvertes.fr/hal-00618112
Least-squares policy iteration, J. Mach. Learn. Res, vol.4, pp.1107-1149, 2003. ,
Linear Least-Squares algorithms for temporal difference learning, Machine Learning, pp.33-57, 1996. ,
Tree-based batch mode reinforcement learning, J. Mach. Learn. Res, vol.6, pp.503-556, 2005. ,
Stable Function Approximation in Dynamic Programming, Proceedings of the International Conference on Machine Learning (ICML), 1995. ,
DOI : 10.1016/B978-1-55860-377-6.50040-2
Dimension reduction and its application to model-based exploration in continuous spaces, Machine Learning, pp.85-98, 2010. ,
DOI : 10.1007/s10994-010-5202-y
Incremental Online Learning in High Dimensions, Neural Computation, vol.11, issue.4, pp.2602-2634, 2005. ,
DOI : 10.1162/089976602753284491
Multivariate Analysis Estimation of principal components and related models by iterative least squares, pp.391-420, 1966. ,
Receptive Field Weighted Regression, ATR Human Information Processing Laboratories, 1997. ,
Bayesian Reward Filtering, Recent Advances in Reinforcement Learning, S. Girgin and colleagues, pp.96-109, 2008. ,
DOI : 10.1007/978-3-540-89722-4_8
URL : https://hal.archives-ouvertes.fr/hal-00351282