J. A. Acebrón, L. L. Bonilla, C. J. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, vol.77, issue.1, pp.137-185, 2005.
DOI : 10.1103/RevModPhys.77.137

D. Aeyels and J. A. Rogge, Existence of partial entrainment and stability of phase locking behavior of coupled oscillators. Progress of Theoretical Physics, pp.921-942, 2004.

W. W. Alberts, E. J. Wright, and B. Feistein, Cortical Potentials and Parkinsonian Tremor, Nature, vol.27, issue.5181, pp.670-672, 1969.
DOI : 10.1038/221670a0

A. L. Benabid, P. Pollak, C. Gervason, D. Hoffmann, D. M. Gao et al., Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. The Lancet, pp.403-406, 1991.

E. Brown, P. Holmes, and J. Moehlis, Globally Coupled Oscillator Networks, Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich, 2003.
DOI : 10.1007/978-0-387-21789-5_5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Chopra and M. W. Spong, On Exponential Synchronization of Kuramoto Oscillators, IEEE Transactions on Automatic Control, vol.54, issue.2, pp.353-357, 2009.
DOI : 10.1109/TAC.2008.2007884

A. L. Fradkov, Cybernetical Physics. From Control of Chaos to Quantum Control, 2007.
DOI : 10.1098/rsta.2016.0439

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5311443

A. Franci, A. Chaillet, and W. Pasillas-lépine, Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-field feedback. To appear in: Automatica -Special Issue on Biology Systems, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526066

C. Hammond, R. Ammari, B. Bioulac, and L. Garcia, Latest view on the mechanism of action of deep brain stimulation, Movement Disorders, vol.27, issue.Part 1, pp.2111-2121, 2008.
DOI : 10.1002/mds.22120

URL : https://hal.archives-ouvertes.fr/inserm-00483505

F. C. Hoppensteadt and E. M. Izhikevich, Weakly connected neural networks, Applied Mathematical Sciences, vol.126, 1997.
DOI : 10.1007/978-1-4612-1828-9

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 2007.

A. Jadbabaie, N. Motee, and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf, pp.4296-4301, 2004.

S. Krantz and H. Parks, A primer of real analytic functions, Birkhäuser, 2002.

R. Kumar, A. M. Lozano, E. Sime, and A. E. Lang, Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor, Neurology, vol.61, issue.11, pp.61-1601, 2003.
DOI : 10.1212/01.WNL.0000096012.07360.1C

Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, 1984.
DOI : 10.1007/978-3-642-69689-3

J. Lee, Introduction to smooth manifolds. Graduate Texts in Mathematics, 2006.
DOI : 10.1007/978-1-4419-9982-5

H. Nijmeijer and A. Rodriguez-angeles, Synchronization of Mechanical Systems, World Scientific Series on Nonlinear Science, vol.46, 2003.
DOI : 10.1142/5391

R. Olfati-saber and R. M. Murray, Consensus Problems in Networks of Agents With Switching Topology and Time-Delays, IEEE Transactions on Automatic Control, vol.49, issue.9, pp.1520-1533, 2004.
DOI : 10.1109/TAC.2004.834113

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 2001.
DOI : 10.1017/CBO9780511755743

M. C. Rodriguez-oroz, Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up, Brain, vol.128, issue.10, pp.2240-2249, 2005.
DOI : 10.1093/brain/awh571

M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony:???An approach to suppression of pathological brain rhythms, Physical Review E, vol.70, issue.4, 2004.
DOI : 10.1103/PhysRevE.70.041904

A. Sarlette, Geometry and Symmetries in Coordination Control, 2009.

S. V. Sarma, M. Cheng, Z. Williams, R. Hu, E. Eskandar et al., Using Point Process Models to Compare Neural Spiking Activity in the Subthalamic Nucleus of Parkinson's Patients and a Healthy Primate, IEEE Transactions on Biomedical Engineering, vol.57, issue.6, pp.1297-1305, 2010.
DOI : 10.1109/TBME.2009.2039213

L. Scardovi, A. Sarlette, and R. Sepulchre, Synchronization and balancing on the N-torus, Systems & Control Letters, vol.56, issue.5, pp.335-341, 2007.
DOI : 10.1016/j.sysconle.2006.10.020

R. Sepulchre, D. Paley, L. , and N. E. , Stabilization of Planar Collective Motion With Limited Communication, IEEE Transactions on Automatic Control, vol.53, issue.3, pp.706-719, 2008.
DOI : 10.1109/TAC.2008.919857

R. Sepulchre, D. A. Paley, L. , and N. E. , Stabilization of Planar Collective Motion: All-to-All Communication, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.811-824, 2007.
DOI : 10.1109/TAC.2007.898077

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena, vol.143, issue.1-4, pp.1-20, 2000.
DOI : 10.1016/S0167-2789(00)00094-4

N. Tukhlina, M. Rosenblum, A. Pikovsky, and J. Kurths, Feedback suppression of neural synchrony by vanishing stimulation, Physical Review E, vol.75, issue.1, p.11918, 2007.
DOI : 10.1103/PhysRevE.75.011918

J. L. Van-hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, Journal of Statistical Physics, vol.68, issue.108, pp.145-166, 1993.
DOI : 10.1007/BF01048044

J. Volkmann, M. Joliot, A. Mogilner, A. A. Ioannides, F. Lado et al., Central motor loop oscillations in parkinsonian resting tremor revealed magnetoencephalography, Neurology, vol.46, issue.5, pp.1359-1370, 1996.
DOI : 10.1212/WNL.46.5.1359

A. T. Winfree, The Geometry of Biological Times, 1980.
DOI : 10.1007/978-3-662-22492-2