D. Aeyels and J. A. Rogge, Existence of partial entrainment and stability of phase locking behavior of coupled oscillators. Progress of Theoretical Physics, pp.921-942, 2004.

N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems. Die Grundlehren der mathematischen Wissenschaften, 1970.

I. I. Blekhman, A. L. Fradkov, H. Nijmeijer, and A. Y. Pogromsky, On self-synchronization and controlled synchronization, Systems & Control Letters, vol.31, issue.5, pp.299-305, 1997.
DOI : 10.1016/S0167-6911(97)00047-9

E. Brown, P. Holmes, and J. Moehlis, Globally coupled oscillator networks. In Perspectives and problems in nonlinear science: A celebratory volume in honor of Larry Sirovich, pp.183-215, 2003.

G. Chen, Chaotification via Feedback: The Discrete Case, Lecture Notes in Control and Information Sciences, 2003.
DOI : 10.1007/978-3-540-44986-7_8

G. Chen and L. Yang, Chaotifying a continuous-time system near a stable limit cycle, Chaos, Solitons & Fractals, vol.15, issue.2, pp.245-253, 2003.
DOI : 10.1016/S0960-0779(02)00096-6

N. Chopra and M. W. Spong, On Exponential Synchronization of Kuramoto Oscillators, IEEE Transactions on Automatic Control, vol.54, issue.2, pp.353-357, 2009.
DOI : 10.1109/TAC.2008.2007884

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators, Proceedings of the 2010 American Control Conference, 2011.
DOI : 10.1109/ACC.2010.5530690

A. Franci, A. Chaillet, and S. Bezzaoucha, Toward oscillations inhibition by mean-field feedback in Kuramoto oscillators, Proc. IFAC World Congress, 2011.
DOI : 10.3182/20110828-6-IT-1002.02170

A. Franci, A. Chaillet, E. Panteley, and F. Lamnabhi-lagarrigue, Desynchronization and inhibition of all-to-all interconnected Kuramoto oscillators by scalar mean-field feedback, Mathematics of Control, Signals, and Systems -Special Issue on large-scale nonlinear systems, 2011.

A. Franci, A. Chaillet, and W. Pasillas-lépine, Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-field feedback, Automatica, vol.47, issue.6, pp.1193-1202, 2010.
DOI : 10.1016/j.automatica.2011.03.003

URL : https://hal.archives-ouvertes.fr/hal-00526066

A. Franci, A. Chaillet, and W. Pasillas-lépine, Robustness of phaselocking between Kuramoto oscillators to time-varying inputs, Proc. IFAC World Congress, 2011.

Y. Gao and K. Chau, Chaotification of permanent-magnet synchronous motor drives using time-delay feedback, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, pp.762-766, 2002.
DOI : 10.1109/IECON.2002.1187603

J. K. Hale, Ordinary Differential equations. Interscience, 1969.

A. Jadbabaie, N. Motee, and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf, pp.4296-4301, 2004.

Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, 1984.
DOI : 10.1007/978-3-642-69689-3

J. Lopez-azcarate, M. Tainta, M. C. Rodriguez-oroz, M. Valencia, R. Gonzalez et al., Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinsons disease, J. Neurosci, issue.19, pp.306667-6677, 2010.

V. V. Nemytskii, V. V. Stepanov, and I. , Qualitative theory of differential equations, 1960.
DOI : 10.1515/9781400875955

R. Orsi, L. Praly, and I. Mareels, Sufficient conditions for the existence of an unbounded solution, Automatica, vol.37, issue.10, pp.1609-1617, 2001.
DOI : 10.1016/S0005-1098(01)00114-5

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 2001.
DOI : 10.1017/CBO9780511755743

D. Plenz and S. T. , A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature, vol.400, issue.6745, pp.677-682, 1999.
DOI : 10.1038/23281

K. Pyragas, O. V. Popovich, and P. A. Tass, Controlling synchrony in oscillatory networks with a separate stimulation-registration setup, Europhysics Letters (EPL), vol.80, issue.4, 2008.
DOI : 10.1209/0295-5075/80/40002

M. Rosa, S. Marceglia, D. Servello, G. Foffani, L. Rossi et al., Time dependent subthalamic local field potential changes after DBS surgery in Parkinson's disease, Experimental Neurology, vol.222, issue.2, pp.184-190, 2010.
DOI : 10.1016/j.expneurol.2009.12.013

S. V. Sarma, M. Cheng, Z. Williams, R. Hu, E. Eskandar et al., Using Point Process Models to Compare Neural Spiking Activity in the Subthalamic Nucleus of Parkinson's Patients and a Healthy Primate, IEEE Transactions on Biomedical Engineering, vol.57, issue.6, pp.1297-1305, 2010.
DOI : 10.1109/TBME.2009.2039213

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena, vol.143, issue.1-4, pp.1-20, 2000.
DOI : 10.1016/S0167-2789(00)00094-4

J. Volkmann, M. Joliot, A. Mogilner, A. A. Ioannides, F. Lado et al., Central motor loop oscillations in parkinsonian resting tremor revealed magnetoencephalography, Neurology, vol.46, issue.5, pp.1359-1370, 1996.
DOI : 10.1212/WNL.46.5.1359

O. V. Popovych, C. Hauptmann, and P. A. Tass, DESYNCHRONIZATION AND DECOUPLING OF INTERACTING OSCILLATORS BY NONLINEAR DELAYED FEEDBACK, International Journal of Bifurcation and Chaos, vol.16, issue.07, pp.1977-1987, 2006.
DOI : 10.1142/S0218127406015830

H. Zhang, D. Liu, and Z. Wang, Controlling Chaos: Suppression, Synchronization and Chaotification, Communications and Control Engineering, 2009.
DOI : 10.1007/978-1-84882-523-9