
HAL Id: hal-00657796
https://hal-supelec.archives-ouvertes.fr/hal-00657796

Submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing data leakage in service orchestration
Thomas Demongeot, Eric Totel, Valérie Viet Triem Tong, Yves Le Traon

To cite this version:
Thomas Demongeot, Eric Totel, Valérie Viet Triem Tong, Yves Le Traon. Preventing data leakage
in service orchestration. IAS 2011, Dec 2011, Malacca, Malaysia. 6 p., �10.1109/ISIAS.2011.6122806�.
�hal-00657796�

https://hal-supelec.archives-ouvertes.fr/hal-00657796
https://hal.archives-ouvertes.fr


Preventing data leakage in service orchestration
Thomas Demongeot

DGA - Information Superiority Unit -Bruz - France
Telecom Bretagne -Cesson-Sévigné - France

thomas.demongeot@dga.defense.gouv.fr

Eric Totel
Valerie Viet Triem Tong

Supelec - Cesson-Sévigné - France
firstname.surname@supelec.fr

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Abstract—Web Services are currently the base of a lot a e-
commerce applications. Nevertheless, clients often use these ser-
vices without knowing anything about their internals. Moreover,
they have no clue about the use of their personal data inside the
global applications. In this paper, we offer the opportunity to
the user to specify constraints on the use of its personal data. To
ensure the privacy of data at runtime, we define a distributed
security policy model. This policy is configured at runtime by
the user of the BPEL program. This policy is enforced within a
BPEL interpreter, and ensures that no information flow can be
produced from the user data to unauthorized services. However,
the dynamic aspects of web services lead to situations where
the policy prohibits the nominal operation of orchestration (e.g.,
when using a service that is unknown by the user). To solve
this problem, we propose to let user to dynamically permit
exceptional unauthorized flows. In order to make decision, the
user is provided with all information necessary for decision-
making. We also present an implementation inside the Orchestra
BPEL interpreter. As far as we know this implementation is the
first information flow monitor for web services that is also end-
user configurable.

I. INTRODUCTION

Web services were originally designed as a set of reusable
services freely available to everyone. Service-orientation even-
tually offers an elegant way to build new services composed of
existing ones using the notion of orchestration. On one hand,
since services are based on encapsulation, the client does not
need to understand how a service works. On the other hand,
this lack of information also means that the client does not
know how his data are used and by who. Currently, most of
the efforts in web service security focus on the confidentiality
of the information at communication protocol level, but do
not solve the problem of how to make a specific service
orchestration trustworthy for the clients. Even if the service or-
chestration provider is trustworthy, it has no technical solution
to guarantee a specific client that it satisfies his expectations
in terms of data protection. User data protection in a service
orchestration is thus crucial, and requires two basic bricks.
First, that expectations of the client must be expressed, which
implies some security policy language is available. In this
paper, we propose such an elementary data protection policy
configurable by the user of the service. Second, the technical
support for checking the client’s data protection policy must
be embedded in the orchestration interpreter. In this paper, we
propose checking at runtime whether the data protection policy
is satisfied with a prototype tool called OrchestraFlow. This
tool extends a BPEL (Business Process Execution Language)

[1] interpretation engine, BPEL being the standard language
for programming an orchestration of web services. BPEL
is a relatively simple language that describes the sequences
of service calls necessary to properly achieve a composite
service. A BPEL program is a web service written in BPEL
executed by a BPEL interpreter. A BPEL program can invoke
other web services, thus it defines the orchestration of web
services. BPEL program may receive information from users,
and use these data to provide information to the invoked
services. Therefore, the BPEL program produces information
flows from the user data to the used services. The problem
is whether these information flows are legal according to the
user privacy policy. OrchestraFlow takes the data protection
policies of the service users as inputs and checks whether there
is a risk of information leakage at runtime w.r.t. the policy.
Instead of a static analysis of the BPEL program, a dynamic
analysis has been chosen in order to be able to handle dynamic
function discovery and dynamic update of the security policy.
Before describing this solution, we present a state of the art
on dynamic information flow tracking (Section II). We define
a security policy that specifies legal information flows. We
define what properties it can provide (Section III) and how
to verify the policy (Section IV). Section V presents how to
dynamically update the security policy. Finally we describe our
implementation called OrchestraFlow (Section VI). Finally, we
conclude and expose future work in Section VII.

II. PROBLEM STATEMENT AND RELATED WORK

A web service orchestration consists in the execution of
a set of services that manipulate and transform data. These
data are injected by other services or by the users. In a
BPEL program these data are protected at different levels.
At message level WS-Security [2] aims at providing security
for exchanging SOAP messages. Besides security architecture,
there exist XML-based languages such as SAML (Security
Assertion Markup Language) [3] and XACML (eXtensible
Access Control Markup Language) [4] that allow specifying
access control rules for accessing data or services. However
there is no access control on the data once they have left their
original container. Using XACML we can specify that a user or
a service can access some data but once these data are accessed
by a service there is no control on their propagation. In this
article we aim at providing a better security level by offering
both a context-adaptative security policy driven by users and
a dynamic enforcement mechanism of the security policy. The



services are not necessarily known before the execution as they
can be discovered at runtime, after a search in a directory of
services for example. Thus we don’t know before the execution
which services are called. Due to this particular feature we
believe that a precise security mechanism depends on the
context of the execution and has to be adjustable at run-time.

In our approach, the security policy will be defined by users
and can be updated at run-time, for instance when services are
discovered. The security policy enforced at runtime relies on
information flow tracking mechanisms that permit detecting
user data leakage inside a BPEL interpreter.

The area of information flow tracking has been well-studied
during the last decade. The basic idea of information flow
tracking is that sensible data are marked with an identifier
sometimes called a taint, a label, a tag or a mark. The marks
are propagated along the flow to taint objects in the system.
The propagation can be either dynamically observed or stat-
ically analysed. Several researches have helped to strengthen
the control of data privacy in BPEL programs, particularly by
statically controlling data flows. In [?] BPEL is considered
as the description of a distributed collaborative system with a
multi-level security policy. This policy ensures that data from
Web Services are used properly, it lacks flexibility and does not
manage dynamic adaptation. [?] and [?] proposed type systems
in order to guarantee non-interference property in dynamic
service composition. But the method proposed by [?] needs to
analyse each service involved in the orchestration and does not
support complex orchestration. In [?] each service involved
in the orchestration need to produce a contract describing
its internal behaviour and the authors proposed a framework
to analyse service orchestration. In [?], the authors propose
an XML schema for specifying an employment policy of
available Web-Services statically verified in BPEL programs.
In both cases, security policies are defined by the host of BPEL
and do not specify a security policy for each user. Moreover,
the verification of information flows is done statically: it is
impossible to address the problem of dynamic discovery of
services. In [7] and [8] Myers and Liskov propose more
expressive marks (which are called labels). A label attached to
a value denote both owners and readers of this value. An owner
decides which principals can access his data, these principals
are the readers. In [9] Myers presents Jif, where labels are used
to annotate data items in a Java program. Jif checks at compile
time, in a manner similar to type checking, if all the executions
of annotated programs verify the information flow policy. In
their approach, the information flow policy consists of the
definition of the readers by the owner. This policy is defined
before the analysis and can be updated by relabelling data.
Their model authorises only two relabelling rules: restriction
and declassification. Data can only be relabelled from L1 to
L2 if L2 is more restrictive than L1 intuitively if it removes
readers, adds owners, or both. A datum is declassified when it
is relabelled to a label containing more readers for an owner
o or when a owner o is removed. A declassification process
is allowed only when the process acts for o. In [10], [11]
the authors explicitly distinguish information from containers

and thus propose to mark containers of information with two
tags reflecting both the origins of the value and the security
policy attached to the container. More precisely sensible data
are associated to a numerical identifier and an information flow
policy specifies how combinations of these identified data can
flow in information containers. The model of marks presented
in [11] can be either implemented at system level or at pro-
gram level. In [10] information flows are tracked at run-time
allowing us to check if the current execution is correct with
regard to the definition of the policy. The policy is completely
defined at the initialisation and can be either deduced from
an interpretation of access control rights or manually defined.
The policy can be updated at run-time simply by changing the
tags. In [11] the authors explain how to perform a modification
of the policy by changing tag value but not how, why or when
to perform such a modification. We propose to adapt these
previous models in the particular context of web services. We
aim to observe information flows inside an orchestration of
web services in order to ensure the user’s data protection.
We adopt a dynamic observation of these flows since in a
context of web services we will dynamically discover the
environment. As in [10], [11] we explicitly identify user’s
data with numerical identifier. As Myers and Liskov in [7]
and [8] the security policy will specify owners and readers
of the identified information items. In other words a user
defines which services can access his information items. The
description of all readers could be difficult for uninformed
users. To solve this problem we propose to dynamically update
the security policy when services are discovered. Our tool
interacts with the users to adapt or complete the security policy
when required.

III. PRIVACY SECURITY POLICY

A piece of information is a data item, a value such as a
string, or an integer. A piece of information is provided to a
web service orchestration through a call to this service. This
piece of information is manipulated by the orchestration and
the services it invoked and mixed with other pieces of infor-
mation. In this work, we consider that sensitive information
and in particular user private data have to be monitored in
order to protect where these information data items flow. For
that purpose we reuse the notion of atomic information first
introduced in [11] to identify sensitive or private information.
Any piece of information handled in the system is either
atomic or obtained after treatments (like calculus) on one or
more atomic information. Here any non-atomic information
is the compound of one or more atomic information. For
example, if x and y are atomic information, 2× x, x+ y, . . .
are compound information, the first non-atomic information
results from the use of x, the second results from the use of
x and y. Let us consider an e-shop service as a example of
service. In this example, atomic information items are provided
by the client : the chosen product, bank details and client email
address. These atomic data items are used to compute all infor-
mation items handled by the complete system, such as the total
amount of the transactions, the confirmation of payment, final



product delivery notification,. . . In a web service orchestration,
the information is located in logical containers of information
like the variables manipulated by services. The operations
performed by programs or services will generate information
flows between variables and consequently information will be
mixed and/or will move from one variable to another. In this
work we want to prevent private or sensitive information to be
accessed by a non-authorized service, i.e., we want to ensure
that sensitive information flows only into variables readable
by authorized services. The security policy allows the user
to specify which services are authorized to manipulate each
atomic information (and by composition for all the compound
information). For that purpose we first determine an owner for
each atomic information (usually the service/user that provides
it to the system). The owner is responsible for statically (at
the start of the service invocation) or dynamically (during
the execution of the service orchestration) determining the set
of services that can access this information. These services
will be called information readers. A service is allowed to
read an atomic information only when it appears in the set
of legal readers for this atomic information. The rest of the
policy is determined by composition. When an information is
derived from several atomic information items, the owner of
this compound information is the set of all owners of atomic
information. The readers of this compound information are all
the services that are also readers of each atomic information
from which it derives. This security policy can be seen as an
information flow policy: a flow of information i (atomic or
compound) to a container belonging to a service s is legal if
and only if the service s has the right of access to information
i, i.e., if s is a reader of i. More formally we use the following
notations:
Information: I = {i1, ..., in} is the set of atomic information
of the system. Information derived from several atomic infor-
mation in ij , . . . , ik is denoted by ij ⊕ . . .⊕ ik
Services: S = {s1, ..sm} is the set of services of the system.
Owners of information i are services that we denote
owner(i) ⊆ S. They are defined as follows:

• If i is an atomic information then its owner is the service
that injected it into the system.

• If i is a compound information, i.e., i = ij ⊕ . . . ⊕ ik
then

owner(i) = owner(ij) ∪ . . . ∪ owner(ik) (1)

Readers of an information i are services defined by the owners
of i which we denote readers(i) ⊆ S. Readers are defined as
follows:

• if i is an atomic information, readers of i are the readers
allowed by the service which injected it into the system;

• if i = ij ⊕ . . .⊕ ik then

readers(i) = readers(ij) ∩ . . . ∩ readers(ik) (2)

The security policy defines allowed readers for atomic infor-
mation, rules of composition (1) and (2) define, by composi-
tion, readers of compound information. The policy is defined

by the owners of information, since an owner determines the
readers that are allowed to read its atomic information. A call
to a service that brings information is legal only if the service
called is a reader for this information. In the same way, a
response from a service is only authorized if the caller is a
legal reader for the received information. The policy can be
updated at any time by adding or removing a reader from
the set of readers of information. An owner is responsible for
removing readers from its own atomic information. When an
information is compound, the several owners have to agree for
any modification.

IV. DYNAMIC CHECKING OF THE SECURITY POLICY

In this work, the security policy is enforced through meta-
data or simply labels put on every container of information:
which means on every variable in a BPEL program. As it has
been proposed by Myers in [7] a label of a variable denotes
the owners and the legal readers of its content. In order to
follow the origin of information flow, we add to each variable
the list of initial information used to produce the content of
this variable. The value of a label is initialized as empty and
is first modified when a new item is injected into the web
service through a call to this service. At this moment, the
injected information is considered atomic, its owner is the
caller. The caller also defines the allowed readers for this new
item and consequently the new value of the label. The label is
further modified at each operation on the variable that modifies
the content of the variable. Labels are modified to reflect
owners and readers attached to the information contained in
the variable. When a service calls another service or makes a
response to another service, a verifier checks if the resulting
flow is legal with respect to the current security policy. More
precisely the verifier checks if the recipient of the flow appears
as a reader in the label of the item sent. In the following, we
formally define how labels are defined and modified. As stated
before, a label is meta-data attached to each container and
describes owners and readers of information currently located
in the container. If c is a container its security label is of the
form

Lc = {i1 : sα . sα1 , ..., sαn ; ...; ij : sβ . sβ1 , ..., sβm}

Such a label means that information i contained in c
is based on information i1, ..., ij. Information i1 is owned
by owners(i1) = sα which authorizes readers sα1

, ..., sαn
.

Depending on this label the readers allowed to access the
information located in c are those authorized by all the owners,
i.e., readers(c) = {{sα1 , ..., sαn} ∩ ... ∩ {sβ1 , ..., sβm}}.
By abusing the notation we may use owners(Lc) or
readers(Lc) to express the owners/readers of a container c
labeled by Lc.

Let us consider a service s1 injecting an item of information
i in another service s2 by calling s2 using a variable v.
The service s1 is considered to be the owner of the atomic
information i now located in the variable v of s2. The
variable v is the container of i and its label is on the form
{s1 . sα1

, . . . , sαn
} where sα1

, . . . , sαn
are the readers of i



allowed by s1. In practical terms if the service s1 is executed
by a user, this user will be asked to define the services allowed
as readers of its own information.

When a service is called, it makes some internal computa-
tion before sending a response. These internal computations
induce information flows and modify the content of informa-
tion containers. Since a label attached to a container describes
the security policy of its current content, it has to be updated at
each observation of an information flow towards the container.

From a general point of view, we consider a set of containers
cj , ..., ck labeled by Lj , ..., Lk if we observe an information
flow from the containers cj , ..., ck to another container c, then
we update the label of c which is now the union of labels
attached to cj , ..., ck. Like Myers, we use the notation Lj t
. . .tLk to denote the union of labels. The precise definition of
t is given below. This new label means that the owner of the
content of c is now the union of owners of content located in
cj , ..., ck and the readers are those commonly allowed by these
owners. The new label should also reflect that information
contained in c depends on information from cj , ..., ck, i.e., the
label should reflect the information history.

Labels for Derived Values (Definition of L1 t L2):

owners(L1 t L2) = owners(L1) ∪ owners(L2)
readers(L1 t L2) = readers(L1) ∩ readers(L2)
history(L1 t L2) = history(L1) ∪ history(L2)

There is an example with three containers c1, c2 and c3,
respectively labeled by :

• Lc1 : {i1 : s1 . s5, s6; i2 : s1 . s5, s6}
• Lc2 : {i1 : s1 . s5, s6; i3 : s2 . s6, s7}
• Lc3 : {i4 : s3 . s4, s7}

We consider an information flow from c1 and c2 to c3. This
flow modifies the content of c3 which is now a value derived
from those located in c1 and c2. The label Lc3 is updated to
Lc1 t Lc2 , i.e.
{i1 : s1 . s5, s6; i2 : s1 . s5, s6; i3 : s2 . s6, s7}
and means that

owners(c3) = owners(c1) ∪ owners(c2) =
{s1} ∪ {s1, s2} = {s1, s2}

readers(c3) = readers(c1) ∩ readers(c2) =
{{s5, s6} ∩ {s5, s6}} ∩ {{s5, s6} ∩ {s6, s7}} = {s6}

history(c3) = history(c1) ∪ history(c2) =
{i1, i2} ∪ {i1, i3} = {i1, i2, i3}

The definition of the security policy is carried out via
the propagation of the labels attached to the containers of
information. When a service performs a response using a
variable c this response will be authorized according to the
security policy if the recipient appears as a reader in Lc. From
a practical point of view, in our work the security policy is
propagated through the labels at runtime in a modified BPEL
interpreter. The legality of a call to a service or a response
from a service is checked just before the call / response.

V. DYNAMIC UPDATE OF THE SECURITY POLICY

Let us consider a BPEL program performing a call of a
service s (or similarly a response to a service s) using data d
having a label on the form

Ld = {i1 : s1 . s11 , ..., s1n ; ...; ij : sj . sj1 , ..., sjm}

We have to verify if this call is legal with regard to the security
policy before performing the call. By definition of the security
policy this call is legal if and only if the service s is an
authorised reader for the data d. To check this legality we only
need to verify if s appears as a reader in the label attached to d,
i.e., if s ∈ {s11 , ..., s1n , . . . sj1 , . . . sjm}. If s is an authorized
reader then the BPEL program performs the call. Otherwise
we ask owners of s to confirm if the call must be authorized
anyway. Indeed, since services can be dynamically discovered
we can not decide if the call is really forbidden or if the owners
have not completely defined the security policy.

We use a dedicated service to ask all owners (s1, . . . , sj)
if they authorize or not sending a compound information d
computed using their atomic information resp. i1, . . . , ij.

More precisely the BPEL interpreter calls a dedicated
service to contact the information owners. This service is an
exception to the security policy, we consider that this particular
service is a reader for any atomic information. In future work
we plan to protect this dedicated service: for instance we plan
to encrypt the data sent to/by this service. This service is used
to ask every owner sk of atomic information ik if they accept
to modify the policy of ik. The service thus uses a request
composed of four parts:

• the initial information ik that was used to compute the
value d ;

• the value d if the owner is an authorized reader of d, this
part is empty otherwise;

• the service s ;
• if the information actually sent to the service depends

explicitly or implicitly on the initial information.
For each owner, this call may have three possible responses:

• (refusal) the owner refuses to modify the security policy.
• (temporary exception) the owner accepts the update of

the security policy only for this call/response of service.
• (agreement) the owner accepts the update of the security

policy until the end of the execution of the BPEL pro-
gram. In this case the label of the variable is modified.

If at least one owner refuses the modification, the service
call (or the response) is not performed. If all the owners
accept the modification but at least one of them authorises
only a temporary exception then the call (or the response)
is performed and the label attached to d remains the same.
Finally when all the owners accept the modification, the label
is modified: s is added as reader for d.

VI. ORCHESTRAFLOW : A DYNAMIC MONITOR FOR BPEL

In this section we present OrchestraFlow which implements
the model detailed in the previous sections as a patch for
the BPEL interpreter Orchestra. OrchestraFlow taints variables



of a BPEL program using labels as detailed before, the
implementation of labels is presented in this section. A label is
updated at each modification of the content of the variable. In a
BPEL program this content is directly modified by operations
involving the variable. Thus we have modified the original
Orchestra interpreter to observe information flows made by a
BPEL program and to consequently update the labels of the
involved variables.

A BPEL program takes as inputs messages coming from
other web services. Because all messages are in XML format,
we modify the XML inputs in order to add our security label.
We modified all XML primitive types by adding an optional
label attribute where authorized readers are represented by an
URI (adress of Web Services) separated by a semi-colon. If
the label attribute is used with an empty string then no service
is allowed to access that data. If the label attribute is not used,
all services are allowed to access that data.

In order to allow dynamic updates of the security policy,
each user of a BPEL program uses a client side security
service. The security service is a simple web-service that runs
on the computer of the client. This service receives all requests
to update the security policy defined in the BPEL program.

If the sender is another web service which does not execute
OrchestraFlow, then we consider the variable as a new atomic
information without label (meaning that all services are legal
readers). Applying this property allows us to be compatible
with existing BPEL interpreters that do not carry out our
protection mechanisms.

In OrchestraFlow, a label is therefore a list of triple on the
form (initial information ; owner ; list of readers authorized
for this owner). In BPEL, a variable is represented via a
XML tree structure that can be composed of leafs (simple
elementary values) or nodes (complex variables composed of
several elementary values). In order to store the labels attached
to each variable, the tree structure is duplicated and filled up
with the labels of the elements composing the variable.

Each variable has its own label stored on a duplicated tree
structure. After the initial information, the first URI of a label
represents the owner of the data, and the following URIs,
separated by a semi-colon, represent the authorized readers
of this data.

The label of a variable is updated at each observation
of an information flow. As defined early by D. Denning in
[12], Information flows from object x to object y, whenever
information stored in x is transferred to, or used to derive
information transferred to, object y. Here we distinguish
implicit or explicit information flow. An implicit information
flow signals information through the control structure of a
program [13]. The reader will find a complete survey on this
subject in [13]. First we focus on explicit information flows
between variables which are transfers of information induced
by operations made by the program involving these variables.
Among them Assign, Invoke, Receive, Reply in-
duce explicit information flows. OrchestraFlow extends Or-
chestra in order to update concerned labels at each call of one
of the mentioned operations.

Explicit information flows are mostly induced by assign-
ments and communication with services.

An assignment: copies the value of the expression e
in x. After the execution of the assignment the information
contained in x depends now on every information contained
in e. In this case, we must ensure that the label of x after
the execution of the assignment reflects the policy of the
information contained in e. When e is simply a single BPEL
variable then value of label of x is updated to the value of
the label of e. In other words, if an assignement copies the
value of e in x then OrchestraFlow propagates the value of
the label Le in Lx. More generally an expression e in a BPEL
program could be a part of a BPEL variable or a more complex
expression written in an external language. OrchestraFlow
uses, like Orchestra, XPath 1.0 as expression language. For
each XPath expression we calculate the resulting label from
information contained in the XPath expression according to
the definition IV.

Communication between Services: Three BPEL func-
tions allow communications with external services : invoke,
receive and reply. The first, invoke, provides syn-
chronous communications with services, i.e., in the same
function data are sent to the service and a response is received.
In order to allow asynchronous communication with services,
we use the same function invoke with the second function
receive which allows the asynchronous reception of the
response of the service called with the invoke function.

These communication primitives produce information flows
from the caller to the receiver. It is thus necessary to update
the labels of the sent messages (case of invoke) or the labels
of the variables assigned at the reception of a message (case
of a receive) by performing the union of the labels of the data
involved.

For example, by using an invoke function, the service
my service is called with the variable e as input parameter.
The result of this service will be stored in the variable x. The
variable x after executing the service depends both on the
information returned by the called service (my service) but
also on information contained in the variable e. Indeed there
are flows from e and the return of my service. The security
label of x after the execution of the invocation of my service
is computed according to the definition IV.

In the same way we propagate labels in OrchestraFlow dur-
ing an asynchronous service call with the functions invoke
and receive.

The second type of information flow that can be created by
the language is of implicit type. It is what happens for example
during conditional operations and loops. In these cases, data
manipulated within the structure of the loop or conditional
depend on the variables used in the conditional statement of
the condition or the loop.
Loops and conditionals are treated in the same way. All
operations performed inside the conditional or the loop are
implicitly dependent on the value of the condition c.
In the case of assignments in a conditional, the value of the
variable x receiving the expression e also depends on the value



of c. There is a flow from c to x. The label of x is computed
from the labels of e and c according to the definition IV.
In the case of service invocations in a conditional, if a service
call is performed there is an implicit information flow from c
to the service call since it is done according to the value of c.
We must, at the time of the service call, ensure that it is also
authorized by the security policy associated with c.
In OrchestraFlow we modified the ScopeRuntime class in
order to add a stack which contains labels of conditional or
while condition. When a conditional starts, a label is added to
this stack. At the end of this conditional the label is removed.
During the execution of an explicit flow the computation of
the new label takes care of both the labels of the expression
considered in the explicit flow and the resulting label of the
implicit flow stack. The legality of the information flow is
checked when a service tries to send information to an other
service. Two functions send data to external services: invoke
and reply. When one of these functions is called, we verify
that the service call complies with the security policy, i.e., the
recipient service belongs to the authorized readers of the data.
More formally, when a service uses invoke or reply with
output variable m towards a service s OrchestraFlow checks if
s ∈ reader(m) as defined in definition IV. In order to prevent
implicit information flow, a second verification must be done.
The service call should be authorized by the resulting label of
the implicit flow stack.

When an illegal flow is detected, it is necessary to ask the
information owner if he accepts or not to update the security
policy. In Section V we presented information sent by the
BPEL interpreter to the owner and the possible answers of
the owner. To implement this functionality in OrchestraFlow
we decided to delegate to each owner to implement their own
security service. This is a web service respecting a WSDL file
describing the interface. This interface is common to all se-
curity services enabling OrchestraFlow to interact in the same
way with all the security services. So when OrchestraFlow
detects an illegal information flow, it makes a call to the
web security service of the owner of that information (the
address of the security service is sent with the security policy
information at the beginning of the BPEL program execution).

VII. CONCLUSION

The goal of our work is to give the user of a web service
the ability to restrain the use of his data by services he was
never heard of. At the time of a service call, he is able to
define which user data can be accessed by which web services.
This property is guaranteed by a distributed security policy
that defines which data can be accessed by which service.
Using the security model defined by Myers et al. as a basis,
our contribution consists in applying this type of security
policy to Web Services and to dynamically define what are
the variables in an orchestration of Web Services (written in a
BPEL program) that are influenced by the user inputs. For this
purpose, we follow the information flows that are produced
by the various operations available in the BPEL interpreter.
When flows are produced between variables, we update the

labels attached to these variables to reflect the services that can
read the data items. Thus, we can detect implicit or explicit
data leakage and ensure the privacy of the user data. This
approach proved to be feasible and lead to the implementation
of the mechanisms inside the Orchestra BPEL interpreter.
However such an approach usually requires that the user knows
all services involved in the orchestration. That is why we
proposed a mechanism to dynamically update or build the
security policy and principles for integrating this mechanism in
OrchestraFlow. In particular, we defined a security mechanism
in order to allow updates of an information flow security policy
by the user of a BPEL program.

REFERENCES

[1] OASIS, “Web services business process execution language version
2.0,” OASIS Standard, April 2007. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[2] ——, “Web services security: Soap message security 1.1,”
OASIS Standard Specification,, Feb 2006. [Online]. Avail-
able: http://www.oasis-open.org/committees/download.php/16790/wss-
v1.1-spec-os-SOAPMessageSecurity.pdf

[3] ——, “Assertions and protocols for the oasis security assertion markup
language (saml) v2.0,” OASIS Standard, March 2005.

[4] ——, “extensible access control markup language (xacml) version 2.0,”
OASIS Standard, Feb 2005.

[5] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for
java,” in Annual Computer Security Applications Conference (ACSAC),
2005.

[6] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” SIGARCH Comput.
Archit. News, vol. 32, no. 5, pp. 85–96, 2004.

[7] A. C. Myers and B. Liskov, “A decentralized model for information flow
control,” Proc. ACM Symp. on Operating System Principles, pp. 129 –
142, October 1997.

[8] A. Myers and B. Liskov, “Complete, safe information flow with decen-
tralized labels,” in IEEE Symposium on Security and Privacy, 1998.

[9] A. C. Myers, “Jflow: Pratical mostly-static information flow control,”
Proceedings of the 26th ACM Symposium on Principles of Programming
Langages, pp. 228 – 241, 1999.

[10] G. Hiet, V. Viet Triem Tong, L. Me, and B. Morin, “Policy-based
intrusion detection in web applications by monitoring java information
flows,” Int. J. Inf. Comput. Secur., vol. 3, no. 3/4, pp. 265–279, 2009.

[11] V. Viet Triem Tong, A. Clark, and L. Mé, “Specifying and enforc-
ing a fine-grained information flow policy: Model and experiments,”
in Journal of Wireless Mobile Networks, Ubiquitous Computing and
Dependable Applications, 2010.

[12] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–
513, July 1977.

[13] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, 2003.


