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ABSTRACT: In this work, specific indicators are used to characterize the criticality of 

components in a network system with respect to their contribution to failure cascade 

processes. A realistic-size network is considered as reference case study. Three different 

models of cascading failures are analyzed, differing both on the failure load distribution logic 

and on the cascade triggering event. The criticality indicators are compared to classical 

measures of topological centrality, for identifying the one most characteristic of the cascade 

processes considered. 
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1 INTRODUCTION 

Cascading failures are a major threat to distributed, interconnected systems such as power 

transmission networks
(1)

, communication systems
(2)

, transportation systems
(3)

, social 

networks
(4)

 or even metabolic networks
(5)

. These types of failures are usually initiated when a 

heavily loaded component of the system fails, and its load is redistributed to other 

components; the redistribution may cause the load on other components to exceed their 

capacity causing them to fail or protection mechanisms to shut them down to prevent further 

failures. 

Models and simulation tools have been devised to describe cascading failure processes in 

network systems; yet, substantial challenges are still open in this research field, e.g. related 

to
(1)

: i) the origins and implications of the distributions of cascade sizes, ii) the dependencies 

between the initiating events and the successive cascading events, iii) how to design 

protections for avoiding the propagation of cascading failures after their outbreak. 

In this study, some of these issues are looked at within an abstract modeling paradigm for 

analyzing the system response to cascading failures, which can be used to guide a successive 

detailed simulation focused on the most relevant physical processes and network components. 

The need for such an analysis tool is even stronger for systems in which the cascade 

dynamics is rapid and modifications are actuated onto the network in order to mitigate the 

evolution of the cascade. For example, in electrical power transmission networks a cascade of 

events leading to blackout usually occurs on a time scale of minutes to hours and is 

completed in less than one day
(1)

. 

In this paper, three different models of cascading failures are considered differing for the 

logic of redistribution of the failure load
(6,7,8)

. Two scenarios for the cascade triggering event 

are considered, i.e., either a random failure or a targeted intentional attack. The modeled 
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cascade spreading process is followed step by step and indicators are evaluated for each 

component, such as the frequency of its participation to a cascade, the average time before its 

entrance into a cascade, the average duration and final size of the cascade emerging from its 

failure. The criticality of the components identified by the indicators of their contribution to 

the development of cascading failures is associated to classical measures of topological 

centrality for the three considered scenarios
(9,10,11,12,13)

. 

The contents of the paper are organized as follows: the three models of failure propagation 

in network systems are presented in Section 2; in Section 3, the indicators of component 

criticality in cascading failures are introduced; in Section 4, they are computed for a realistic-

size network of electrical power transmission; in Section 5, the results obtained are compared 

with topological centrality measures and the most relevant to the cascade process is 

identified. Conclusions are drawn in Section 6. 

2 MODELS OF CASCADING FAILURES IN NETWORK SYSTEMS 

In the following, the three models of cascading failure processes considered are briefly 

presented
(7)

. 

2.1 Local propagation of a fixed amount of load 

Consider a network system of N identical components with random initial loads sampled 

uniformly between a minimum value L
min

 and a maximum value L
max

. All components have 

the same limit of operation L
fail

, beyond which they are failed. When a component fails, a 

fixed and positive amount of load P is propagated locally to first-neighbors of the failed 

component in the network. If there is no working component in the neighborhood of a failed 

component, the cascade spread in that “direction” is stopped. 
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To start the cascade, an initial disturbance imposes on each component an additional load 

D. If the sum of the initial load Lj of component j and the disturbance D is larger than a 

component load threshold L
fail

, component j fails. This failure occurrence leads to the 

redistribution of an additional load P on the neighboring component which may, in turn, get 

overloaded and fail within a cascade which follows the connection pattern of the network 

system. As the components become progressively more loaded, the cascade continues. 

The algorithm for simulating the cascading failures proceeds in successive stages as 

follows:  

0. At stage i = 0, all N components are initially working under independent uniformly 

random initial loads L1, L2,…, LN   [L
min

, L
max

], with L
max

 < L
fail

. 

1. An initial disturbance D is added to the load of each component.  

2. Each unfailed component is tested for failure: for j =1, ..., N, if component j is unfailed 

and its load > L
fail

 then component j fails. 

3. The components loads are incremented taking into account the network topology, i.e., the 

failed component neighborhood: for each failed component, the load of its first-neighbors 

is incremented by an amount P. If the neighborhood set of the failed component is empty, 

the associated failure propagation comes to an end. 

4. The stage counter i is incremented by 1 and the algorithm is returned to step 2. 

The algorithm stops when failures are not propagated further. 

The cascade propagation algorithm is embedded in a Monte Carlo simulation framework, 

in which a large number of cascades, e.g. 10000 in this study, is triggered for the same range 

of initial load, [L
min

, L
max

], in order to obtain statistically significant results for various 

realizations of the same average loading condition. The damage caused by the cascades for 

any initial load level, [L
min

, L
max

], is quantified in terms of the number of network components 

which have failed on the average, i.e. the average cascade size, S. It is assumed that each 



5 
 

system operates in such a manner that the initial component loadings vary from L
min

=0 to 

L
max

=L
fail

=1. Thereafter, the average component loading L = (L
min

+1)/2 is raised by increasing 

L
min 

from 0 to 1 at steps of 0.005. The average component loading, L, provides information on 

the initial working conditions of the network in which the cascade is triggered. Large L 

values represent highly-loaded systems, where each component is on the average operating 

close to its limit capacity, L
fail

=1. The range of loading conditions is normalized from 0 to 1 

so that the model for cascading failure is not limited to the propagation of failures in specific 

applications. The normalized loads describe the propagation of an `abstract' cascade of 

failures. Then, for specific applications, the range of loading conditions is scaled to describe 

the dynamics of the actual physical quantities spreading for the network being analyzed. 

Since varying loading conditions are explored only through the variation of L
min

 from 0 to 1, 

the average initial load, L, lies in the range from 0.5 to 1. L=0.5 describes the lowest possible 

loading condition in the network in which the components can assume all the possible loads 

between 0 and 1 with a uniform probability. Conversely, L=1 describes the highest possible 

loading conditions in which all of the components operate at their limit capacity and stop 

functioning in the next time step. 

As the simulation is repeated for different ranges of initial load, [L
min

, L
max

], with L
max

 = 1 

and L
min

 varying from 0 to 1, the pair (L, S) is recorded. 

The transfer of a fixed amount of load P to other (neighboring) components of the network 

upon failure of one of its components may be representative of those systems where each 

node equally contributes to the global system activity and following their progressive failures 

the same amount of damage is caused to the still working ones. The original version of this 

probabilistic model
(14)

 was developed to capture salient features of the cascading failures in 

large, fully-connected infrastructure systems. It was initially intended to reproduce loading-

dependent cascading failures, such as the ones occurring in large blackouts of electric power 
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transmission systems
(14)

. Its scope was extended afterwards to investigate coupled 

infrastructure systems
(15)

, e.g. power-communication, power-market, communication-

transportation, and market-market systems. In this view, P should not be thought of as 

actually distributing the load of a component to the neighboring components; rather, one 

should think of P as an increased “stress” in the neighboring components due to failures in 

the network. As a biological analogue, it seems interesting to mention that in biological 

systems the death of a neural cell lead to the release of a toxin and this, in turn, is responsible 

for the death of many other cells
(16)

. 

2.2 Local redistribution of the failure load 

In some systems and under some operating conditions, the transfer of a fixed amount of 

load P to other (neighboring) components upon a failure may not be the proper mechanism. It 

may be more realistic that the actual load previously carried by the now failed component is 

passed onto the other (neighboring) components in the network. This redistribution scheme is 

more suitable to characterize the redistribution of the electrical load that occurs in a power 

transmission network when some component is disconnected from the system due to 

overloads. To model such condition, step 3 of the cascade propagation algorithm in the 

previous Section 2.1 is modified as follows: 

3. The components loads are incremented taking into account the network topology, i.e., the 

failed component neighborhood: given the generic component j, failed under load L
*

j > 

L
fail

, its load L
*
j is spread uniformly among its neighbors, by incrementing their load of an 

amount equal to L
*
j divided by the present degree kj of the failed component, i.e., the 

number of nodes to which component j is currently connected. If the operating 

neighborhood set of the failed node is empty (i.e., if there are no operating components 

connected to it), the failure propagation comes to an end. 
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By this modification, the load arising from the failure of a component is uniformly shared 

among its neighbors (it still holds that in case of an empty neighborhood, the load is no 

longer propagated and the cascade is stopped in that “direction”). 

2.3 Redistribution of the load based on the shortest paths  

In the previous model, the loading of the components is independent of the connectivity 

pattern of the system, which only affects the load redistribution following a failure. This 

loading model may apply to systems like the power distribution networks, in which the load 

at each substation is independent on the number of overhead transmission lines injecting onto 

it. For other systems, like information networks, the load on a component, e.g. a router or a 

hypernode, can be modeled as dependent on the number of links transiting through it. 

To model this situation, let us assume that at each time step one unit of the relevant 

quantity processed by the network, e.g. information, is exchanged along the shortest path 

connecting every pair of components; the load at a component is then the total number of 

shortest paths passing through that component
(17,18)

. At any instant of time, this load is to be 

compared with the component capacity which is the maximum load that it can process. In 

man-made networks, the capacity of a component is limited by technological limitations and 

economic considerations. For modeling purposes, it can be assumed that the capacity Cj of 

component j is dimensioned proportionally to its nominal load Lj at which it is designed to 

operate initially, 

1,2,...,j jC L j N    (1) 

where the constant α > 0 is for simplicity assumed equal for all components. When all the 

components are working, the network operates without problems in so far as α>0. On the 

contrary, the occurrence of component failures leads to a redistribution of the shortest paths 
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in the network and, consequently, to a change in the loads of the surviving components. If the 

load on a component increases beyond capacity, the component fails and a new redistribution 

of the shortest paths and loads follows, which, as a result, can lead to a cascading effect of 

subsequent failures. This model was employed to investigate cascading failures in many real-

world networks, such as the Internet at autonomous system level
(8)

, the electrical power grid 

of the western United States
(8)

 and the IEEE power transmission test system
(19)

. 

The importance of the cascade effect with respect to intentional attacks stems from the fact 

that a large damage can be caused by the attack on a single component. Obviously, in general 

more links render a network more resistant against cascading failures, but this increases the 

cost of the network. 

When looking at the potential of a cascading process triggered by the removal of a single 

component, two situations are expected: if prior to its removal the component is operating at 

a relatively small load (i.e., if a small number of shortest paths go through it), its removal will 

not cause major changes in the balance of loads and subsequent overload failures are 

unlikely; however, when the load of the component is relatively large, its removal is likely to 

affect significantly the loads of other components and possibly start a sequence of overload 

failures. Intuitively, the following behavior is expected
(8)

: global cascades occur if the 

network exhibits a highly heterogeneous distribution of loads and the removed component is 

among those with highest loads; otherwise, cascades are not expected. 

In the modeling scheme adopted, the distribution of loads is highly correlated with the 

distribution of links: networks with heterogeneous distribution of links are expected to be 

heterogeneous with respect to the load, so that on average components with large number of 

links will have high loads. This behavior confirms the robust-yet-fragile property of 

heterogeneous networks, which was first observed in Ref. (20), with respect to the attack on 

several components. 
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3 INDICATORS OF COMPONENT CRITICALITY IN CASCADING FAILURES 

The flow redistribution process is simulated at discrete time steps. At t0 the network is 

intact; at t1 a failure occurs; at ti, i  2 the cascading failure progresses as nodes overload and 

cause further failures in neighboring elements. The cascading process is followed until the 

response stabilizes; at this point, indicators of the severity of the cascade are computed. Four 

features of the cascade process have been analyzed for the different models. 

The frequency of participation to a cascade, fi, of every component i=1, 2,…N has been 

evaluated normalizing the number of its failures over the number of failure cascades 

simulated starting from different initial conditions (load disturbance or component attacked, 

depending on the model): 

# of failures of component i

# of cascades simulated
if    (2) 

This measure gives information about the importance of a component in the buildup of a 

cascade. 

The average discrete time step in which a component i=1, 2,…N joins the cascade of 

failures, called the entrance time ti, has been assessed averaging over the total number of 

cascades simulated: 

time when component i enters the cascade

total # of cascades simulated
it   (3) 

This indicator is a measure of how early in time a component gets involved in a cascade 

process. 

To catch how the failure of a component i=1, 2,…N causes other components to fail 

subsequently, the average duration measured as discrete time steps, di, and final size, si, of a 

cascade following the failure of component i have been evaluated through the same averaging 

procedure used for computing the average entrance time, ti: 
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duration of a cascade following the failure of component i

total # of cascades simulated
id   (4) 

final size of a cascade following the failure of component i

total # of cascades simulated
is   (5) 

It is expected that the failures of more critical components will result in larger sizes of the 

developing cascades; furthermore, two different behaviors can be anticipated for the duration 

of the generated cascade: namely, depending on the cascade evolution, the failure of a critical 

component could lead either to the sudden failure of the remaining working components, with 

a very short cascade duration or to a long chain of delayed failures, resulting in a long 

cascade duration. In this sense, the final size of the cascade is considered a direct indicator of 

the criticality of a component whereas the duration measure by itself does not allow drawing 

clear-cut conclusions about the critical contribution of components to the cascading failure 

process. 

It is important to stress once more that the two averages in the indicators (4) and (5) are 

taken with respect to the total number of cascades triggered in the system, to reflect the 

component average relevance to the cascade process. 

4 CASE STUDY 

The indicators of component criticality introduced in Section 3 have been computed for 

the topological network of the 380 kV Italian power transmission network (Fig. 1), 

considering cascades evolving according to the three failure propagation models of Section 2. 

The 380 kV Italian power transmission network is a branch of a high voltage level 

transmission, which can be modeled as a network of N=127 nodes connected by K=171 

links
(21,22)

, defined by its N×N adjacency (connection) matrix [aij] whose entries are 1 if there 

is an edge joining node i to node j or 0, otherwise. Its topology is taken as reference but the 
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failure propagation models applied to it have very little specific to such system; it is only 

used so to give concrete examples of the findings. 

Three models that capture the propagation of failures in interconnected systems have been 

reviewed in Section 2. They show that initial perturbations, e.g. a uniform overload D, even 

small, or the removal of one system component have the potential to trigger large, system 

cascading failures. As reported in Section 2, each one of these models has been applied to 

“abstractly” describe cascading failure processes in spatially-distributed, multi-component 

infrastructures, such as power distribution systems
(8,14,15,19)

, telecommunication networks
(8,15)

, 

transportation systems
(15)

 and even market systems
(15)

. The simulation frameworks provided 

by these models abstract the physical details of the services delivered by the infrastructures, 

while at the same time capturing the essential operating features. In this respect, here we 

abstractly model cascading failures that propagate over the bare topological structure of a 

network, with little specific to the electrical service it provides. We assess the extent to which 

the criticalities identified by the different models relate to one another, and to classical 

measures of topological centralities for networks. We expect that different models identify a 

number of common criticalities. The bare topological structure of the 380 kV Italian power 

transmission network will be the sole responsible for these “invariant” criticalities in failure 

propagations. 

In all simulations, the cascading failure evolution has been followed step by step, the 

relevant information collected and, eventually, the quantities 

Error! Reference source not found. - (5) have been computed. 
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Figure 1. The 380 kV Italian power transmission network
(21,22)

. 
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4.1 Local propagation of a fixed amount of load 

Table I shows the results for the cascade model relative to the local propagation of a fixed 

amount of load (Section 2.1). The values of the parameters which govern the outbreak and 

the propagation of the cascade, i.e. D and P, respectively, are set independently of each other 

and must be determined in the context of the specific failure propagation process to be 

represented. Different regions of the parameter space may originate completely different 

behaviors with respect to the propagation of failures. Large D values result in many 

component failures at the initial stage of the cascade; large P values facilitate the successive 

spreading of the failure cascade to a large number of components, since a large overload (P) 

is transferred to the neighborhood of a component, upon its failure. In our work, the initial 

disturbance D and the load transfer amount P are heuristically set equal to 2% and to 7% of 

the failure load L
fail

, respectively (L
fail

 = L
max

 = 100%). This choice of values for the cascade 

parameters is intended to model systems in which small perturbations, D, have the potential 

to trigger cascading failures that can sustain themselves and affect the entire system, thanks 

to the large P overload value. Consequently, the majority of the simulations results in few 

initial failures at the outbreak of the cascade and successive propagation to a large number of 

components during the next steps. This occurs in particular when the system operates at high 

loading conditions. Ultimately, this choice of the cascade parameters allows the clear 

identification of the effects that the initial loading conditions, L, have on the propagation of 

the cascading failures. 

Three out of the four component criticality indicators of Section 3, namely fi, di and si 

identify the most critical components with respect to the different cascade features they 

measure. Components 64, 68 and 88 turn out to be the most critical with respect to fi and di 

while according to si component 64 and 88 are less important than other components, e.g. 101 

(Villanova in Fig. 1); this is due to the fact that the latter constitutes a bridge between 
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different loosely-connected subsets of components, namely between the Northern and the 

Southern Adriatic backbone, and thus functions as a channel for spreading the failure to 

regions of the system which are far apart. 

The ranking agreement among the fi and di indicators is somewhat unexpected since they 

are related to different cascade features, namely, the frequency of participation and the 

duration of the cascade. 

It is interesting to note that the average entrance time ti (Table I) is shortest for those 

components which least participate and contribute to the cascade development (e.g., 127, 117 

and 116). According to this propagation model, following a failure, a small extra load is 

given to the neighboring components and, consequently, the cascade never affects the whole 

system, in particular sparing the less connected components, e.g., nodes 127, 117 and 116. 

Thus, the poorly connected nodes only enter the cascade soon after its initiation if either they 

are themselves triggering it or they reside in the neighborhood of a triggering node: this 

results in their small average entrance time in the cascade, ti (Table I). 

 

Table I. Summary of the criticality indicators rankings for the model of local propagation of a fixed amount of 

load; only the twenty-four most critical nodes are reported. 

Node fi Node ti Node di Node si 

64 0.2828 125 1.909 64 4.524 68 29.31 

68 0.2776 126 1.918 88 4.504 24 29.20 

88 0.2750 124 1.943 68 4.487 115 28.94 

67 0.2705 121 1.952 35 4.448 43 28.91 

79 0.2686 123 2.007 67 4.443 7 28.88 

35 0.2679 52 2.033 79 4.440 101 28.85 

60 0.2668 55 2.035 60 4.435 3 28.83 

75 0.2653 115 2.052 59 4.433 2 28.79 

59 0.2646 3 2.071 98 4.423 21 28.67 

81 0.2638 56 2.074 75 4.421 64 28.64 

98 0.2630 2 2.080 103 4.406 88 28.61 

63 0.2629 7 2.081 97 4.404 103 28.59 

62 0.2617 120 2.085 43 4.396 35 28.57 

103 0.2616 122 2.086 24 4.385 110 28.49 

92 0.2607 24 2.094 81 4.382 79 28.35 

97 0.2596 8 2.100 63 4.379 52 28.29 

91 0.2591 113 2.101 14 4.376 28 28.27 

41 0.2582 68 2.104 40 4.375 92 28.27 
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Node fi Node ti Node di Node si 

61 0.2581 54 2.104 101 4.370 55 28.26 

14 0.2579 114 2.112 61 4.367 120 28.24 

71 0.2577 127 2.115 27 4.366 47 28.23 

40 0.2576 101 2.117 28 4.365 8 28.18 

43 0.2569 119 2.120 7 4.360 125 28.18 

78 0.2551 21 2.120 41 4.360 124 28.16 

 

 

To validate the results against several initial conditions, a sensitivity analysis of the model 

and of the rankings provided by the four criticality indicators is carried out with respect to the 

initial disturbance D. The choice of this parameter is critical for the model because a large D 

should more easily induce simultaneous overloads in more nodes. Figure 2 portrays the 

effects of the propagation of failures in terms of the cascade size S against the initial loadings 

L, for eight different values of the initial disturbance D. The analysis is performed for values 

of D that span the entire feasibility range D[0, 1]. Larger D values result in a cascade with 

significant size even at low loading conditions. 
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Figure 2. The average cascade size S vs. the average initial load L, for eight different values of the initial 

disturbance D[0.8, 0.6, 0.4, 0.2, 0.1, 0.01. 0.001, 0.0001]. Each point in the diagrams is averaged over 10000 

cascades triggered for the same range of initial load [L
min

, L
max

]. 

 

Rankings provided by the four criticality indicators are evaluated for every scenario 

involving different D. The similarities in the classification of the nodes criticalities are 

assessed to test the consistency of the indicators with respect to different conditions that 

initiate a cascade of failures. To this aim, the 127 items of the rankings are grouped in five 

batches [10, 35, 37, 35, 10] of decreasing criticality, i.e., the first batch encompasses the ten 

most critical nodes, the second batch encompasses the following thirty-five most critical 

nodes, and so on, until the ten least critical nodes, that are supplied in a risk-informed 

perspective. Then, the rankings provided by homologous indicators are compared looking for 

similarities in the batches of equal criticality and a degree of consistency is evaluated. For 

each one of the five groups of batches, the occurrences of the same node are enumerated (the 

first occurrence is not accounted for since the interest is on multiple occurrences of the same 

node in the rankings obtained for various D). The occurrences for different items are added 

up to build a synthetic index which then is scaled in the interval [0%, 100%] through division 

by the maximum number of repeated occurrences, i.e., the product of the size of the batch 

times the number of compared rankings decreased by one (to account for the first occurrences 

of the items): 100% similarity indicates that the same components are included in the batches 

for various D; 0% similarity indicates that for different D the batches of equal criticality 

contain diverse components. Table II shows the degree of consistency in the rankings 

provided by the four proposed indicators for nine scenarios with different D. fi and di 

consistently rank the most and the least critical nodes in propagating the cascade of failures 

for the different scenarios. In particular, all the nine rankings for fi consistently identify nodes 
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64 and 68 as the most critical ones. On the other hand, the rankings provided by ti and si are 

more sensitive with respect to the values of the initial disturbance D. In particular, two 

different patterns are identified in the rankings provided by ti and si, namely, for small D, i.e., 

D[0.02, 0.01. 0.001, 0.0001] and for large D, i.e., D[0.8, 0.6, 0.4, 0.2, 0.1]. 

 

Table II. Degree of consistency in the rankings provided by the four proposed indicators for nine scenarios with 

different D, i.e., D[0.8, 0.6, 0.4, 0.2, 0.1, 0.02, 0.01. 0.001, 0.0001]. 

 Degree of consistency 

Batch fi ti di si 

10 87.50 57.50 82.50 60.00 

35 92.86 73.21 85.36 73.57 

37 91.89 74.66 79.73 78.38 

35 92.86 76.43 84.64 72.14 

10 88.75 60.00 83.75 52.50 

 

 

4.2 Local redistribution of the failure load 

Table III, shows the results for the cascade model which redistributes the failure load onto 

the neighborhood of the failed node for the values of initial disturbance D = 0.02. All the 

component criticality indicators agree that 64, 68, 35, 59, 60 and 88 are most critical to the 

cascading process. In particular, nodes 59 (Piacenza) and 60 (Caorso) form a bridge between 

two densely connected areas in Northern Italy. In this failure propagation model, the amount 

of load transferred to the neighboring components after a failure is typically larger than in the 

previous case; this gives rise to a stronger coupling among components so that when a 

cascade is initiated it is more likely to fully develop and affect the whole system: thus, the 

components more prone to failure are the ones which are most connected. 

It can be also noticed that the nodes which least contribute to the cascade process, nodes 

69, 70, 87 and 26 according to fi, are ranked as having the highest si; this is due to the fact 
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that if they get involved in a failure cascade this happens early in time, e.g. node 70 and 69 

according to ti, before the cascade has spread over a large portion of the system. 

 

Table III. Summary of the criticality indicators rankings for the model of local redistribution of the failure load; 

only the twenty-four most critical nodes are reported. 

Node fi Node ti Node di Node si 

64 0.7481 64 3.754 64 8.414 69 35.00 

68 0.7358 70 3.876 35 8.277 70 35.00 

35 0.7345 68 3.878 59 8.241 87 31.43 

59 0.7295 35 3.879 60 8.197 26 30.15 

60 0.7275 69 3.882 88 8.177 74 29.54 

88 0.7250 88 3.905 68 8.174 1 29.28 

24 0.7173 79 3.951 79 8.111 50 29.20 

79 0.7170 59 3.952 14 8.110 4 29.00 

43 0.7164 43 3.987 61 8.086 117 28.80 

14 0.7159 60 3.999 43 8.053 57 28.06 

61 0.7133 14 4.015 21 8.008 77 27.59 

28 0.7122 110 4.038 62 8.004 116 27.41 

67 0.7113 21 4.055 67 8.004 37 27.06 

21 0.7111 87 4.062 63 7.991 19 27.00 

27 0.7110 98 4.074 40 7.987 72 26.88 

63 0.7100 67 4.084 98 7.972 93 26.61 

62 0.7086 101 4.087 110 7.949 51 26.59 

103 0.7041 75 4.110 75 7.937 54 26.56 

75 0.7039 97 4.115 97 7.932 94 26.54 

97 0.7034 61 4.123 24 7.921 124 26.49 

98 0.7031 24 4.131 28 7.920 44 26.40 

40 0.7030 40 4.132 101 7.899 125 26.33 

81 0.7009 103 4.140 27 7.895 126 26.23 

101 0.6991 81 4.160 103 7.877 121 26.15 

 

 

4.3 Redistribution of the load based on the shortest paths 

With no loss of generality, in this analyzed scenario, interest is on cascade onset and 

propagation over the bare topological structure of the power transmission system; no 

reference is made to the specific electrical properties which characterize this electrical 

infrastructure. 
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The scenario considered regards the malevolent targeted attack aiming at disconnecting 

node 88, which handles the largest load in the system, i.e., through which pass the largest 

number of generator-distributor shortest paths. Once the triggering event occurs, flow 

redistribution takes place as a mechanism to equilibrate supply and demand constraints. The 

flow redistribution process is followed by introducing an artificial cascade discrete time step 

ti: at t0 the network is intact, at t1 the initial induced failure occurs; and at t≥2 the cascading 

failure progresses as nodes overload and cause further failures in neighboring elements. The 

cascading process is followed until the response stabilizes and indicators of the severity of the 

cascade are computed. 

In Fig. 3, the final value of the cascade size, S, once the system response has stabilized, is 

plotted versus the tolerance parameter, α. Cascades of failures have been simulated for nodes 

capacities in the range α[0, 2] (Section 2.3). When α = 0 the nodes capacities are equal to 

the initial loads. When α = 2 the nodes capacities amount to three times as much as the initial 

loads. With this choice of α, various operational conditions are assessed. As expected, 

increasing the flow-carrying capacity of the network elements reduces the extent of the 

cascades because flow redistribution can be handled at the local scale. Yet, we observe jumps 

to larger values of S. In order to gain a deeper understanding of this, the transition taking 

place at 0.43 ≤ α ≤ 0.44 is analyzed in detail. This behavior is related to the so-called 

“islanding” effect. For α = 0.43, the failures of „weak‟ nodes occurring at the second time 

step split the network into isolated islanding sections (namely, the northern and the southern 

parts of the network), disconnecting many generator-distributor paths and thus reducing the 

demand and stabilizing the power transmission system. Conversely, for α = 0.44, nodes {71, 

83, 84} along the Adriatic backbone are not failed at the second time step, allowing flow 

redistribution to weaker nodes, which fail subsequently at the third time step disrupting the 

power transmission network. This behavior suggests the inclusion of „weak‟ nodes in the 
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system design, for early disconnection or islanding and cascade-controlled operation of 

complex infrastructures. Finally, the sharp transition occurring at α = 0.51 is due to the fact 

that nodes which are neighbor of high load nodes are able to handle the redistribution of flow 

thanks to the α increase. This is the case also for the sharp transitions at α = 0.16, α = 1.05 

and α = 1.33 in Fig. 3. 
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Figure 3. The final value of the cascade size, S, vs. the tolerance parameter, α, when the system response has 

stabilized. The cascades are triggered by the removal of the most congested node {88}. 

 

Table IV shows the results for the model relative to cascading failures due to the 

redistribution of the load based on the shortest paths. This model describes a situation 

completely different from the previous ones since the load at a component is the total number 

of shortest paths passing through that component. Components 35, 14, 79, 12 and 76 turn out 

to be the most critical with respect to si and di whereas ti gives an opposite ranking for the 

reason explained before. 
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The components ranked as the most critical according to fi are now the ones with a small 

capacity, since initially they do not have many shortest paths passing through them but still 

are linked to highly connected components or lie along a direct path linking highly connected 

components (30 and 35 for critical component 31, LOM9; 7 and 2 for critical components 8, 

Casanova, and 6, Laboratorio Cesi; 24, 7 and 21 for critical components 17, LOM1, and 15, 

Musignano): while other components are failing and the highly connected components are 

still operating, the evolving shortest paths are directed through these critical components 

which subsequently fail due to their low capacity. 

Also, as expected, components of degree one do not participate to any cascade since they 

involve no shortest path transit. The degree, ki, of each node i is reported in Table V. 

The fifth and seventh columns of Table I report a ranking with respect to the indicators di 

and si which is completely different compared to fi. The most critical components form a path 

connecting the Northern area to the Tyrrhenian backbone, i.e. Vignole B. − La Spezia – 

Marginone – Poggio a Caiano. Whenever this path is broken, i.e., either component 14 or 79 

or 12 or 76 fails, the connectivity capability is shifted somewhere else in the network, i.e., in 

the Po river area, leading to an accruement of the cascade with further failures. 

 

Table IV. Summary of the criticality indicators rankings for the model of redistribution of the load based on the 

shortest paths; only the twenty-four most critical nodes are reported. 

Node fi Node ti Node di Node si 

31 0.1622 49 1.000 35 3.800 14 20.19 

8 0.1480 73 1.000 14 3.238 79 15.57 

17 0.1465 119 1.000 79 3.107 76 13.92 

15 0.1417 121 1.000 12 3.000 35 13.10 

6 0.1370 122 1.000 76 3.000 12 10.64 

23 0.1307 123 1.000 68 2.923 61 10.50 

39 0.1276 124 1.000 43 2.917 86 9.928 

93 0.1244 125 1.000 36 2.909 11 9.541 

22 0.1244 126 1.000 86 2.812 88 9.423 

34 0.1165 43 1.083 41 2.775 75 8.880 

54 0.1134 107 1.083 61 2.750 68 8.385 

120 0.1134 109 1.111 40 2.700 78 7.899 

30 0.1134 56 1.136 11 2.676 48 7.852 
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Node fi Node ti Node di Node si 

94 0.1134 99 1.161 47 2.650 59 7.676 

55 0.1118 115 1.213 46 2.628 81 7.521 

81 0.1118 111 1.217 66 2.552 110 7.226 

86 0.1087 110 1.226 67 2.500 23 7.205 

78 0.1087 102 1.233 7 2.455 36 7.091 

21 0.1071 11 1.243 48 2.444 7 7.000 

62 0.1071 67 1.250 78 2.420 9 6.932 

66 0.1055 60 1.258 62 2.397 58 6.803 

96 0.1055 103 1.267 81 2.394 67 6.800 

58 0.1039 106 1.278 60 2.387 47 6.750 

51 0.0992 118 1.280 88 2.385 62 6.706 

 

 

Table V. Degree of each node displayed in descending order for the network shown in Fig. 1. 

Node ki Node ki Node ki Node ki Node ki Node ki 

68 7 81 4 62 3 13 2 65 2 126 2 

64 6 91 4 63 3 15 2 66 2 1 1 

24 5 97 4 71 3 16 2 80 2 4 1 

35 5 98 4 73 3 17 2 82 2 19 1 

43 5 110 4 76 3 18 2 83 2 26 1 

79 5 115 4 78 3 22 2 85 2 37 1 

88 5 8 3 84 3 23 2 93 2 50 1 

92 5 10 3 86 3 25 2 94 2 57 1 

101 5 11 3 89 3 29 2 96 2 69 1 

103 5 12 3 90 3 31 2 99 2 70 1 

2 4 20 3 95 3 32 2 100 2 72 1 

3 4 30 3 104 3 33 2 102 2 74 1 

7 4 36 3 106 3 34 2 105 2 77 1 

14 4 38 3 107 3 39 2 109 2 87 1 

21 4 40 3 108 3 42 2 111 2 116 1 

27 4 41 3 113 3 44 2 112 2 117 1 

28 4 46 3 114 3 45 2 118 2 127 1 

47 4 48 3 119 3 49 2 121 2   

59 4 52 3 120 3 51 2 122 2   

60 4 55 3 5 2 53 2 123 2   

67 4 56 3 6 2 54 2 124 2   

75 4 61 3 9 2 58 2 125 2   

 

 

4.4 Intra-comparison 

Considering each individual model, the ranking results of Tables I, III and IV are 

consistent with a physical analysis of the network system, indeed highlighting the 
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components which most affect the failure spreading. In the following, the results for the three 

presented scenarios are compared to identify similarities in the characterization of the 

relevance of each network element for the different propagation modes. 

The logic of propagation of a fixed amount of load and of redistribution of the failure load 

give consistent results across the criticality indicators: in both cases, the most critical 

components according to fi, di and si are those with highest degree (68, Ravenna Canala and 

64, Martignone) and which constitute a bridge between different loosely-connected subsets of 

components, whose failure effect spreads to regions far apart in the system (59-60, 88, 

Montalto and 79, Poggio a Caiano). Conversely, it is not always true that most connected 

nodes are the most critical as it can be seen from node 24 (Milano Centro), which is not 

among the most critical in the fixed amount of load redistribution model. In the failure 

propagation model with redistribution, the amount of load transferred to the neighboring 

components after a failure is typically larger than in the previous case of propagation of a 

fixed amount of load to all survivor network nodes; this explains the differences in the 

ranking among critical components with respect to the previous model and the ti ranking; 

note that for a small load transfer, as in the first failure propagation model, the poorly 

connected nodes only enter the cascade soon after its initiation if either they are themselves 

triggering it or they reside in the neighborhood of a triggering node, resulting in their small ti. 

In the case of the redistribution of the load based on the shortest paths, the components 

ranked as the most critical according to fi are those of small capacity, since initially they do 

not have many shortest paths passing through them but still are linked to highly connected 

components. 
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5 CENTRALITY MEASURES FOR CASCADES 

Regarding the role that an element plays in a network, various measures of the importance 

of a network node, i.e. of the relevance of its location in the network with respect to a given 

network performance, have been introduced. In social networks, for example, the so-called 

centrality measures are introduced as importance measures to qualify the role played by an 

element in the complex interaction and communication occurring in the network. Classical 

topological centrality measures are the degree centrality
(10,11)

, the closeness centrality
(9,11)

, the 

betweenness centrality
(11)

 and the information centrality
(12,13,23)

. They specifically rely only 

on topological information to qualify the importance of a network element. 

The topological degree centrality, DC , gives the highest score of importance to the node 

with the largest number of first neighbors. This agrees with the intuitive way of estimating 

the influence of a node in a graph from the size of its immediate environment. Quantitatively, 

the topological degree centrality is defined as the degree of a node, normalized over the 

maximum number of neighbors this node could have: thus, in a network of N  nodes, the 

topological degree centrality of node i , D

iC , is defined as
(10,11)

: 

0 1
1 1

ij

j GD Di
i i

a
k

C C
N N


   

 


 (6) 

where ik  is the degree of node i  and 1N   is the normalization factor introduced to 

account for the fact that a given node i  can at most be adjacent to 1N   other nodes. The 

running time required for computing DC  for all nodes is ( )O N . 

The topological closeness centrality, CC , captures the idea of speed of communication 

between nodes in a way that the node which is “closest” to all others receives the highest 

score. In other words, this measure allows identifying the nodes which on average need fewer 

steps to communicate with the other nodes, not only with the first neighbors. Because this 
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measure is defined as “closeness”, quantitatively the inverse of the node's mean distance from 

all the others is used. If ijd  is the topological shortest path length between nodes i  and j , 

i.e., the minimum number of edges traversed to get from i  to j , the topological closeness 

centrality of node i  is
(9,11)

: 

1
0 1C C

i i

ij

j G
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d

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  


 (7) 

Note that also this measure is normalized to assume values in the interval  0,1 .The 

running time required for computing CC  for all nodes by means of Floyd algorithm is
(24)

 

3( )O N . 

The topological betweenness centrality, BC , is based on the idea that a node is central if it 

lies between many other nodes, in the sense that is traversed by many of the shortest paths 

connecting pairs of nodes. The topological betweenness centrality of a given node i  is 

quantitatively defined as
(11)

: 

   , ,

( )1
0 1

1 2

jkB B

i i

j k G j k i jk

n i
C C

N N n  

  
 

  (8) 

where jkn  is the number of topological shortest paths between nodes j  and k , and ( )jkn i  

is the number of topological shortest paths between nodes j  and k  which contain node i . 

Similarly to the other topological centrality measures, B

iC  assumes values between 0  and 1 

and reaches its maximum when node i  falls on all geodesics (paths of minimal length 

between two nodes). The running time required for computing BC  for all nodes by means of 

the Floyd algorithm is 3( )O N . 
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The topological information centrality, C
I
, relates a node importance to the ability of the 

network to respond to the deactivation of the node. In this view, the network performance is 

measured by the network topological efficiency E[G] defined as
(23)

: 

 
, ,

1

( 1)
ij

i j G i j

E G
N N


 




  (9) 

where 1ij ijd  is the efficiency of the connection between nodes i and j, measured as the 

inverse of the shortest path distance linking them. 

The topological information centrality of node i is defined as the relative drop in the 

network topological efficiency caused by the removal of the edges incident in i
(23)

: 

( ) [ ] [ '( )]
0 1

[ ]

I I

i i

E i E G E G i
C C

E E G

 
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where G'(i) is the graph with N nodes and K−ki edges obtained by removing from the 

original graph G the edges incident in node i. An advantage of using the efficiency to 

measure the performance of a graph is that E[G] is finite even for disconnected graphs. Also 

C
I
 is normalized by definition in the interval [0, 1]. 

The running time required for computing C
I
 for all nodes by means of the Floyd algorithm 

is 4( )O N
(25)

. 

Table VI reports the ranking of the individual network components according to the 

information (C
I
), degree (C

D
), closeness (C

C
) and betweennes (C

B
) centrality measures. 

 

Table VI. Information, degree, closeness and betweennes centrality measure ranking for the network of Fig. 1; 

only the twenty-four most central nodes are reported. 

Rank Node
 

C
I
 Node C

D
 Node C

C
 Node C

B
 

1 68 0.6901 68 0.0556 64 0.1691 88 0.2941 

2 14 0.6900 64 0.0476 75 0.1649 14 0.2775 

3 88 0.6897 
24, 35, 43, 79, 

88, 92, 101, 103 
0.0397 79 0.1645 75 0.2721 

4 119 0.6892 2, 3, 7, 14, 21, 27, 0.0317 81 0.1643 64 0.2523 
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Rank Node
 

C
I
 Node C

D
 Node C

C
 Node C

B
 

28, 47, 59, 60, 67, 

75, 81, 91 

5 64 0.6876   14 0.1617 79 0.2333 

6 75 0.6867   78 0.1615 101 0.2105 

7 122 0.6856   67 0.1603 76 0.2093 

8 79 0.6852   62 0.1601 59 0.1840 

9 12 0.6841   61 0.1595 12 0.1817 

10 
78, 

110 
0.6840   63 0.1583 110 0.1781 

11     76 0.1579 61 0.1732 

12 101 0.6838   88 0.1573 102 0.1721 

13 59 0.6836   41 0.1537 98 0.1667 

14 123 0.6827   71 0.1535 68 0.1584 

15 76 0.6826   60 0.1533 71 0.1520 

16 47 0.6822   65 0.1520 83 0.1476 

17 43 0.6819   59 0.1511 84 0.1452 

18 24 0.6814   68 0.1509 40 0.1437 

19 35 0.6811   73 0.1484 67 0.1338 

20 61 0.6808   82 0.1482 35 0.1326 

21 121 0.6802   86 0.1475 78 0.1271 

22 
71, 81, 

98 
0.6800   83 0.147 60 0.1232 

23     80 0.1469 81 0.1225 

24     40 0.1467 107 0.1113 

 

 

The comparison of the results in Table VI with those obtained with the criticality 

indicators applied to the models of local propagation of a fixed amount of load (Table I) and 

of redistribution of the failure load (Table III), shows that the degree centrality measure 

perfectly matches the criticalities found by the four introduced indicators, i.e., components 

68, 64, 35 and 24. Thus, when the cascading propagation process can be modeled in either of 

these two ways, the attention must be focused on the components with highest degree of 

connectivity. This is because according to these failure propagation mechanisms, the failure 

spreading is affected more by the individual component connectivity than by the global 

network connectivity accounted for by the other centrality measures. It must be noticed that 

the other centrality measures not only partially reflect the criticalities found by C
D
 but also 

complement them, i.e., components 75, 79 and 88. 
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In case of stronger coupling among components as in the model of redistribution of the 

failure load, also the betweenness centrality measure can serve the purpose of indicating 

components criticality with respect to propagating failures, e.g. components 88, 75, 79 and 

101. 

From the comparison between the results in Table VI and those for the model relative to 

cascading failures propagated by the redistribution of the shortest paths (Table IV), it can be 

said that the betweenness and information centrality measures only partially account for the 

criticalities highlighted by the indicators di and si (node 14), since not only the centrality of a 

component is relevant but also the fact that it is connecting central components (as do critical 

nodes 12 and 76 connected to central component 14 and critical node 79 connected to central 

component 75 in the network). 

With respect to the indicators fi, it can be said that the most critical components are those 

less connected, which lie along a direct path linking components with the highest degree 

centrality (35 and 28 for critical component 31; 3 and 7 for critical component 8; 24 and 7 for 

critical components 17 and 15; 2 and 7 for critical component 6). 

6 CONCLUSIONS 

In this paper, the feasibility of evaluating component criticality indicators for a realistic-

size network has been investigated. Three different models of cascading failures have been 

considered differing for the logic of redistribution of the failure load. Cascade events 

triggered by both random failures and targeted attacks have been analyzed. 

When applied to models of local propagation of a fixed amount of load and of 

redistribution of the failure load, three of the proposed criticality indicators, namely fi, di and 

si, are consistent in their criticality ranking of the components. When applied to the model of 
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cascading failures due to the redistribution of the shortest paths, si and di are consistent in 

ranking the components according to their criticality. 

In general, the frequency of participation of every component to a cascade, fi, appears to 

be the most relevant indicator since it highlights the direct contributions of each component 

in the cascading failure process irrespective of the different propagation logic. In the 

considered realistic-size network, for the first two model considered, fi identifies as most 

critical those nodes with highest degree, while for third model, it ranks as most critical those 

nodes which have few connections but which are linked to highly connected components or 

lie along a direct path linking highly connected components. Moreover, fi and di are 

consistent in their criticality ranking of the components in cascades triggered by several 

different initial conditions. 

Complementary criticality information is provided by the di and si indicators, which 

capture the components failure contribution in promoting successive failures. In the present 

reference case study, for the model of local propagation of a fixed amount of load, si 

particularly highlights those nodes bridging different loosely-connected subsets of 

components, while for the model of redistribution of the shortest paths, si identifies the 

criticality of those nodes connected to nodes having high centrality values. Conversely, the 

ranking provided by the ti indicator is dependent on the coupling strength among 

components: when the components are weakly coupled, it gives homogeneous results with 

the other indicators, whereas it gives opposite results if the components are strongly coupled. 

In this respect, the ti indicator could be useful in identifying the degree of coupling among 

components in interconnected systems with respect to propagating failures. 

The rankings obtained with the different cascade criticality indicators have been compared 

with classical centrality measures. The degree and betweenness centralities, which account 

for the number of connections pointing to a component and for the number of shortest paths 
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passing through a component, respectively, appear to play a major role in identifying those 

network components which most contribute to the failure propagation process. 

For the models of local propagation of a fixed amount of load and of redistribution of the 

failure load, the degree centrality measure appears to be the most characteristic for the 

cascade process, with the betweenness centrality measure providing complementing 

information in case of intense coupling among components. 

For the model of cascading failures propagated by the redistribution of the shortest paths, 

the betweenness centrality measure only partially highlights those components which most 

contribute in determining large-sized failure cascades. Further investigations would be worth 

to identify or devise a general centrality measure characteristic of the model of cascading 

failures propagated by the redistribution of the shortest paths. 
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