R. E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME-Journal of Basic Engineering, vol.82, pp.35-45, 1960.

F. C. Schweppe, Recursive state estimation: Unknown but bounded errors and system inputs, IEEE Trans. Automat. Contr, vol.13, issue.1, pp.22-28, 1968.

S. H. Witsenhausen, Sets of possible states of linear systems given perturbed observations, IEEE Trans. Automat. Contr, vol.13, pp.556-558, 1968.

D. P. Bertsekas and I. B. Rhodes, Recursive state estimation for a setmembership description of uncertainty, IEEE Trans. Automat. Contr, vol.16, issue.2, pp.117-128, 1971.

E. Walter and H. Piet-lahanier, Exact recursive polyhedral description of the feasible parameter set for bounded-error models, IEEE Trans. Automat. Contr, vol.34, issue.8, pp.911-915, 1989.

A. Vicino and G. Zappa, Sequential approximation of feasible parameter sets for identification with set membership uncertainty, IEEE Trans. Automat. Contr, vol.41, pp.774-785, 1996.

C. Combastel, A state bounding observer based on zonotopes, Proc. of European Control Conference, 2003.

B. T. Polyak, S. A. Nazin, C. Durieu, and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica, vol.40, pp.1171-1179, 2004.

T. Alamo, J. M. Bravo, and E. F. Camacho, Guaranteed state estimation by zonotopes, Automatica, vol.41, pp.1035-1043, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00632977

M. Althoff, O. Stursberg, and M. Buss, Reachability analysis of linear systems with uncertain parameters and inputs, Proc. of the 46th IEEE Conference on Decision and Control, vol.41, pp.726-732, 2007.

A. B. Kurzhanski and I. Vályi, Ellipsoidal calculus for estimation and control, 1996.

W. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing, vol.61, pp.47-67, 1998.

A. B. Kurzhanski and P. Varaiya, On ellipsoidal techniques for reachability analysis. Part I: External approximations, Optimization Methods and Software, vol.17, pp.177-206, 2001.

L. J. Guibas, A. Nguyen, and L. Zhang, Zonotopes as bounding volume, Proc. of the Symposium on Discrete Algorithm, pp.803-812, 2005.

A. Ingimundarson, J. M. Bravo, V. Puig, T. Alamo, and P. Guerra, Robust fault detection using zonotope-based set-membership consistency test, International Journal of Adaptive Control and Signal Processing, vol.23, issue.4, pp.311-330, 2008.

A. Lalami, Diagonostic et approaches ensemblistes base des zonotopes, 2008.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, 2001.

S. Khadroui, M. Rakotondrabe, and P. Lutz, Robust control for a class of interval model: application to the force control of piezoelectric cantilevers, Proc. of the 49th IEEE Conference on Decision and Control, 2010.

V. Le, T. Alamo, E. Camacho, C. Stoica, and D. Dumur, A new approach for guaranteed state estimation by zonotopes, Proc. of the 18th World Congress IFAC, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00632977

M. Mansour, Simplified sufficient conditions for the asymptotic stability of interval matrices, International Journal of Control, vol.50, issue.1, pp.443-444, 1989.

O. Pastravanu and M. Voicu, Necessary and sufficient conditions for componentwise stability of interval matrix systems, IEEE Trans. Automat. Contr, vol.49, issue.6, pp.1016-1021, 2004.

T. Alamo, R. Tempo, D. R. Ramírez, and E. F. Camacho, A new vertex result for robustness problems with interval matrix uncertainty, Systems and Control Letters, vol.57, pp.474-481, 2008.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, 1994.

R. L. Burden and J. D. Faires, Numerical Analysis, 2000.