A. Arnaud, J. Bect, M. Couplet, A. Pasanisi, and E. Vazquez, ´ Evaluation d'un risque d'inondation fluviale par planification séquentielle d'expériences. In: 42èmes Journées de Statistique (2010) Author-generated postprint version

S. K. Au and J. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics, vol.16, issue.4, pp.263-277, 2001.
DOI : 10.1016/S0266-8920(01)00019-4

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo et al., A framework for validation of computer models Bandit problems: sequential allocation of experiments Dynamic programming and optimal control Efficient global reliability analysis for nonlinear implicit performance functions On computational methods for structural reliability analysis Structural reliability analysis using a standard deterministic finite element code Empirical Model-Building and Response Surfaces A fast and efficient response surface approach for structural reliability problems Geostatistics: Modeling Spatial Uncertainty, Technometrics Athena Scientific AIAA Journal Structural Safety Structural Safety Structural Safety, vol.49, issue.71, pp.138-154, 1985.

C. Currin, T. Mitchell, M. Morris, D. Ylvisaker, and F. Deheeger, Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments, Journal of the American Statistical Association, vol.15, issue.416, pp.953-963, 1991.
DOI : 10.1093/biomet/64.2.309

F. Deheeger and M. Lemaire, Support vector machine for efficient subset simulations: 2 SMART method, 10th International Conference on Application of Statistics and Probability in Civil Engineering, Proceedings and Monographs in Engineering, Water and Earth Sciences, pp.259-260

F. Taylor, B. Echard, N. Gayton, M. Lemaire, B. Echard et al., Kriging-based Monte Carlo simulation to compute the probability of failure efficiently: AK-MCS method Structural reliability assessment using kriging metamodel and active learning Graded learning for object detection, 6` emes Journées Nationales de Fiabilité IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems Proceedings of the workshop on Statistical and Computational Theories of Vision of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR/SCTV), pp.24-26, 1999.

P. I. Frazier, W. B. Powell, S. Dayanik, D. Ginsbourger, D. Ginsbourger et al., A Knowledge-Gradient Policy for Sequential Information Collection, Computational Intelligence in Expensive Optimization Problems, Adaptation Learning and Optimization, pp.2410-2439, 2008.
DOI : 10.1137/070693424

M. S. Handcock, M. L. Stein, and K. Hornik, A Bayesian Analysis of Kriging, Technometrics, vol.21, issue.3, pp.403-410, 1993.
DOI : 10.1080/00401706.1993.10485354

J. E. Hurtado, An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory, Structural Safety, vol.26, issue.3, pp.271-293, 2004.
DOI : 10.1016/j.strusafe.2003.05.002

J. E. Hurtado, Filtered importance sampling with support vector margin: A powerful method for structural reliability analysis, Structural Safety, vol.29, issue.1, pp.2-15, 2007.
DOI : 10.1016/j.strusafe.2005.12.002

D. R. Jones, M. Schonlau, and J. William, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

M. Kennedy and A. O-'hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2001.
DOI : 10.1111/1467-9868.00294

G. S. Kimeldorf and G. Wahba, A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines, The Annals of Mathematical Statistics, vol.41, issue.2, pp.495-502, 1970.
DOI : 10.1214/aoms/1177697089

H. J. Kushner, J. L. Loeppky, J. Sacks, and W. J. Welch, A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise, Journal of Basic Engineering, vol.86, issue.1, pp.97-106, 1964.
DOI : 10.1115/1.3653121

J. Mockus, Bayesian Approach to Global Optimization. Theory and Applications, 1989.

J. Mockus, V. Tiesis, and A. Zilinskas, The application of Bayesian methods for seeking the extremum, Towards Global Optimization, pp.117-129, 1978.

J. Oakley, Estimating percentiles of uncertain computer code outputs, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.14, issue.1, pp.83-93, 2004.
DOI : 10.1111/1467-9884.00300

J. Oakley and A. O-'hagan, Bayesian inference for the uncertainty distribution of computer model outputs, Biometrika, vol.89, issue.4, 2002.
DOI : 10.1093/biomet/89.4.769

J. Oakley and A. O-'hagan, Probabilistic sensitivity analysis of complex models: a Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.34, issue.3, pp.751-769, 2004.
DOI : 10.1214/ss/1009213004

A. Hagan, Curve fitting and optimal design for prediction, Journal of the Royal Statistical Society. Series B (Methodological), vol.40, issue.1, pp.1-42, 1978.

E. Parzen, R. Paulo, V. Picheny, and D. Ginsbourger, An Approach to Time Series Analysis, Adaptive designs of experiments for accurate approximation of target regions, pp.951-989, 1962.
DOI : 10.1214/aoms/1177704840

M. Piera-martinez, H. Pradlwarter, G. Schuëller, P. Koutsourelakis, D. W. Charmpis et al., Application of line sampling simulation method to reliability benchmark problems A Benchmark Study on Reliability in Numerical Recipes in C. The Art of Scientific Computing: A new look at the response surface approach for reliability analysis, Structural Safety Structural Safety, vol.29, issue.123, pp.208-221, 1992.

P. Ranjan, D. Bingham, G. Michailidis, R. Rubinstein, D. Kroese et al., Sequential Experiment Design for Contour Estimation From Complex Computer Codes, Technometrics, vol.50, issue.4, pp.527-541, 1989.
DOI : 10.1198/004017008000000541

T. J. Santner, B. J. Williams, W. Notz, and L. Schueremans, The Design and Analysis of Computer Experiments Probabilistic evaluation of structural unreinforced masonry: Benefit of splines and neural networks in simulation based structural reliability analysis Structural safety, Catholic University of Leuven, issue.3, pp.27-246, 2001.

M. L. Stein, E. Vazquez, and J. Bect, Interpolation of Spatial Data: Some Theory for Kriging A sequential Bayesian algorithm to estimate a probability of failure, Proceedings of the 15th IFAC Symposium on System Identification, SYSID 2009 15th IFAC Symposium on System Identification, SYSID 2009. Saint-Malo France, 1999.
DOI : 10.1007/978-1-4612-1494-6

E. Vazquez, M. Piera-martinez, E. M. Vestrup, J. Villemonteix, J. Villemonteix et al., Estimation du volume des ensembles d'excursion d'un processus gaussien par krigeage intrinsèque The Theory of Measures and Integration Optimisation de fonctions coûteuses An informational approach to the global optimization of expensive-toevaluate functions Structural reliability using finite element methods: an appraisal of DARS, 39ème Journées de Statistiques Conférence Journée de Statistiques, pp.509-534, 2000.

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell et al., Screening, Predicting, and Computer Experiments, Technometrics, vol.34, issue.1, pp.15-25, 1986.
DOI : 10.2307/1269548