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Robust deconvolution-based methods using sparsity constraint and sparse regularization achieve high spatial reso-
lutions in aeroacoustic imaging in low Signal-to-Noise Ratio (SNR). But sparse prior and model parameters should
be further optimized to obtain super resolution and be robust to sparsity constraint. In this paper, we propose a
Robust Approach with Bayesian Sparse Regularization in Aeroacoustic Imaging (RABSRAI) to detect both po-
sitions and powers of near-Þeld wideband uncorrelated sources in poor SNR case, and simultaneously estimate
background noise. The Bayesian interpretation is applied to select the sparse prior and regularization parameter in
stead of knowing source number or SNR. On simulated and wind tunnel data, proposed approach is compared with
the beamforming, DAMAS, Diagonal Remove DAMAS, Robust DAMAS with sparsity constraint (SC-RDAMAS),
Covariance Matrix Fitting (CMF) and CLEAN.

1 Introduction

Nowadays aeroacoustic imaging has become a standard
technique for mapping the location and strength of aeroa-
coustic sources with microphone arrays. It provides insight
into noise generating mechanisms, which is used for design-
ing quieter vehicles and machinery. In this paper, we aim
to investigate near-Þeld wideband aeroacoustic imaging on
vehicle surface in wind tunnel test based on the 2D Non-
Uniform microphone Array (NUA). The beamforming method
is simple and fast, but its spatial resolution and dynamic range
are limited due to high sidelobes. The MUSIC greatly im-
proves resolutions, but its resolution requires highS NRand
source number. Though the Near-Þeld Acoustic Hologram
(NAH) provides good resolution over entire frequency band,
but it is limited by hologram size and can not work well with
sparse antenna array. The CLEAN [8] iteratively extracts
peak sources from a beamforming image, but it could not
separate sources from severe noises. The Deconvolution Ap-
proach for Mapping of Acoustic Source (DAMAS) method
[1] becomes a breakthrough and is successfully applied in
wind tunnel test, however, it is sensitive to noise and suf-
fers from slow convergence. The DAMAS2 and DAMAS3
accelerate the DAMAS by using the invariant point spread
function (PSF) which inevitably harms resolutions. The Co-
variance Matrix Fitting (CMF) method [9] works better than
the above, but is not feasible to use it due to its huge variable
dimensionality. Recently the Robust DAMAS with Sparse
Constraint (SC-RDAMAS) [2] achieves super spatial resolu-
tion and estimates noise variance, but sparsity constraint on
total source power is hard to determine in poor SNR. Above
all, most of classical methods su� ers at least one of these
drawbacks: poor spatial resolutions, sensitive to background
noise, need for source number and high computational cost.

To overcome most of above drawbacks, proposed approach
is to exploit the sparsity of source spatial distributions by ap-
plying Bayesian framework. Our novelties are that we apply
Double Exponential model as spatial sparse prior to obtain
super resolutions in poor SNR, and with the help of Bayesian
interpretation, regularization parameter is determined based
on the forward model error and prior model parameter. By
comparing with the state-of-art methods on simulations and
real data, the advantages of proposed approach are robust to
noise, super resolution, wide dynamic range of power estima-
tions and feasible to use in near-Þeld wideband aeroacoustic
source imaging for vehicle surface in wind tunnel test based
on 2D NUA array.

This paper is organized as follows: In Section 2, formula-
tion of aeroacoustic imaging is brießy introduced. Then our
approach is proposed in Section 3. Performance comparisons
on simulations and real data are illustrated in Section 4 and
Section 5. Finally conclusions are made in Section 6.

2 Formulation of aeroacoustic imaging

2.1 Assumptions

Four necessary assumptions are made: Sources are punc-
tual, temporally uncorrelated; noise is Additive Gaussian White
Noise (AGWN), independent and identically distributed (iid);
sensors are omnidirectional with unitary gain; and reverber-
ations could be negligible in the anechoic wind tunnel.

2.2 Forward propagation model

ConsiderM antenna sensors andK near-Þeld wideband
sourcess� = [s�

1, · · ·, s�
K ]. And the scanning plane consists

of N (N >> M > K) scanning pointss = [s1, · · ·, sN]T at
positionsp = [p1, · · ·, pN]T with pn being 3D coordinate
of the pointn. Each scanning point could be regarded as a
potential source. The total snapshotsT0 of each sensor is
divided intoT segments, where each segment consists ofL
snapshots. Each segment is then converted intoL narrow
frequency bins by Discrete Fourier Transform. Thus for the
segmenti � [1, T] and single frequencyfl , l � [1, L], the ob-
served vectorzi( fl ) = [zi1( fl ), · · ·, ziM ( fl )]T at antenna array
is modeled:

zi( fl ) = A (p, fl )si( fl ) + ei( fl ) (1)

whereei( fl ) = [ei1( fl ), · · ·, eiM( fl )]T denotes the AGWN noise,
andA (p, fl) = [a(p1, fl ), · · ·, a(pN, fl )] is M × N near-Þeld
steering matrix, with steering vector:

a(pn, fl ) = [
1

rn,1
eŠj2� fl � n,1, · · ·,

1
rn,M

eŠj2� fl � n,M ]T (2)

where� m,n is the propagation time from the sourcen to an-
tennam, andrn,m is the propagation distance during� m,n. Ac-
tualrn,m and� n,m will be corrected according to the refraction
in the wind tunnel in Section 5.

2.3 Classical inverse solutions

2.3.1 Near-Þeld beamforming

For the given locationpn and single frequencyfl , the
steering vectora(pn, fl ) is short asan. An estimate of source
poweryn locating at the scanning pointn can be obtained by
the beamforming as:

yn =
ãH

n R̂ ãn

� ãn� 2
(3)

where operator (·)H denotes the conjugate transpose;� · � is
the vector norm; and the beamforming coe� cientãn is:

ãn = [rn,1eŠj2� fl � n,1, · · ·, rn,MeŠj2� fl � n,M ]T (4)
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andR̂ = 1
T

� T
i=1 zi( fl )zi( fl )H is the estimation of observed

covariance matrixR , with R being modeled into:

R = E{zi( fl )zi( fl )H} = AXA H + � 2I (5)

where� 2 is the noise variance;I is the identical matrix; op-
eratorE{·} denotes the mathematical expectation; andX =
E{ssH} is the source correlation matrix, which is diagonal for
uncorrelated sources withx = diag(X ) standing for source
power vector.

2.3.2 DAMAS [1] and its improved methods

When total snapshot segment is large enoughT >> 1, we
getR̂ � R . By neglecting noise in Eq.(5), the DAMAS [1]
method is deduced as:

y = Cx (6)

where x = [x1, · · ·, xN]T; y = [y1, · · ·, yN]T, and power

transferring matrixC has the coe� cient (PSF)cn,q = � ã H
n a q� 2

� ã n� 2

with n, q = 1, · · ·, N. Its iterative non-negative solution is:

x̂n = yn Š

�
�������

nŠ1�

q=1

cnqx̂q +
N�

q=n+1

cnqx̂q

�
������	 , x̂n � 0 (7)

The DAMAS is a powerful technique to deconvolve the beam-
forming result. However, the biggest drawback is that it is
not robust to noise pollution. Several methods improve its
robustness. Diagonal Removal (DR) DAMAS [1] constrains
diag{R̂} = 0 to suppress noise interference, but DR technique
harms weak sources; instead of deconvolving the beamform-
ing result, the CMF with sparsity constraint [9] directly esti-
mates observed covariance matrixR and noise variance� 2,
however, its variable matrix is too large to solve, so the CMF
converges very slowly; the SC-RDAMAS method [2] esti-
mates the noise variance to improve robustness, and applies
sparsity constraint on total source power to achieve super
spatial resolutions, but sparsity constraint is not easily de-
termined in very poor SNR.

3 Proposed approach

3.1 Bayesian sparse regularization
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Figure 1:Generalized Gaussian family

Sparsity fact reveals that sources sparsely lay out on ob-
ject surface, and the source number is rather fewer than the
scanning points. Many literatures have explored sparse dis-
tribution prior such as discussed in [7]. For monopole sources,

we select a distribution with a sharp summit and short tail
among Generalized Gaussian familyGG(x) with respect to
� 1 regularization. For uncorrelated centralized variablex, the
prior model based onGG(x) is expressed:

p(x ) =
N


n

GG(xn|�, � ) � exp

�
������Š�

N�

n

|xn|�
�
�����	 (8)

where probability density function (PDF) ofGG(xn|�, � ) is

GG(xn|�, � ) =
��

2� (1/� )
exp

�
Š� |xn|�

�
(9)

where� (·) represents the Gamma function, and� and� con-
trol PDF pattern. Particularly, when� = 1, we get the Double
ExponentialDE(x) model as:

p(x ) =
N


n

DE(xn|� ) � exp


Š� � x � 1

�
(10)

Four examples ofGG(x ) family and theirŠln[GG(x )] func-
tions are illustrated on Figure 1. For cases 0< � < 1, it is
of great interest to enforce sparsity, but itsŠln[GG(x )] func-
tion is not convex. The Double Exponential model is sparse
enough, and itsŠln[GG(x )] function is convex. For source
powersx , non-negative condition is combined with Double
Exponential prior.

After determining source spatial distribution prior, we con-
sider the likelihoodp(y |x , � 2). In forward propagation model
of Eq.(1), the system error� = [� 1, · · ·, � N] is modeled by:

� = y Š Cx Š � 21N (11)

� denotes the residue part, who consists of estimation errors
and unpredictable parts in forward model. Generally� is
supposed to be Gaussian� � N (0, � 2

� ). Thus the likelihood
p(y |x , � 2) is deduced into:

p(y |x , � 2) =
1

(2�� 2
� )

N/ 2
exp

�
������Š

� y Š Cx Š � 21N� 2

2� 2
�

�
�����	 (12)

According to the Bayes’ rule, the Joint Maximum A Posteri-
ori (JMAP) criterion is expressed as:

J JMAP(x , � 2) = Šln[p(y |x , � 2)p(x )p(� 2)] (13)

For simplicity, we take Je� reys prior forp(� 2) � 1
� 2 . Substi-

tuting Eq.(10) and Eq.(12) into Eq.(13), we get JMAP crite-
rion by omitting small terms as follows:

J JMAP(x , � 2) � � y Š Cx Š � 21N� 2 + 	 � x � 1 (14)

Where regularization parameter is

	 = 2� 2
� � (15)

with

� 2
� = Tr(R̂) Š �x � 1 Š M� 2 (16)

whereTr(R̂) denotes total power of observed signals. When
� 2 becomes bigger,Tr(R̂) consequently increases and� 2

� is
inevitably lager. Due to power conservation, equation (16)
means that the residual power� 2

� equals the total received
power minus original source powers and noise power. There-
fore regularization parameter	 is the function of� x � 1 and
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� 2. Moreover, equation (14) means that larger the system
error � 2

� is, less accurate the forward model becomes, there-
fore the more we need to enforce sparse distribution prior by
increasing	 . Generally� 1-norm for enforcing sparsity and
noise variance estimation are discussed in many literatures
such as [3] and [4]. However, instead of source number esti-
mation or subspace separation, we apply the Bayesian frame
to jointly estimate the source powerx and noise variance� 2.
The Eq.(14) is a convex criterion and can be solved alterna-
tively for x and � 2. In our proposed approach in Eq.(14),
the Bayesian interpretation is applied to select proper sparse
prior to enforce ponctuel sources and achieve super spatial
resolution, and the regularization parameter is inherently de-
termined without knowing exact SNR or source number.

3.2 Wideband estimation

In wind tunnel experiment, aeroacoustic sources are gen-
erated by the friction and collision between the car and wind
ßow. Physically, di� erent car parts with various sizes pro-
duce vibrations with di� erent frequencies. Therefore aeroa-
coustic sources are near-Þeld wideband signals. Consider the
frequency range [fmin, fmax] consisting ofL frequency bins.
Let x̂ ( fl ) be the estimation ofx ( fl) in lth frequency bin.
Then source powersx wb over wideband [fmin, fmax] can be
estimated by ˆx wb = 1

L

� fmax

fl= fmin
x̂ ( fl ).

4 Simulation

In this part, we compare proposed approach with some of
the state-of-art methods in strong background noise (S NR=
0dB) based on real wind tunnel conÞgurations at single fre-
quencyf = 2500Hz. There are 64 2D NUA array on vertical
plane, whose averaging array aperture isd = 2mwith longer
horizontal aperture, as shown in Figure 4a. For NUA array,
it yields almost the same performance as the uniform array
with more sensors does as discussed in [5]. The distance be-
tween source plane and array is aroundR = 4.50m, thus the
beamforming resolution atf = 2500Hz is � B � 
 R/ d =
31cm. For scanning step, we choose� x = 5cm to satisfy
� x/ � B < 0.2 for any f < 3500Hz, which avoids the spa-
tial aliasing in the DAMAS [1]. The propagation speed is
c0 � 340m/ s. Results are illustrated by decibel (dB) images
and section proÞles.

In Figure 3a,Þve uncorrelated complex sources (K = 5)
are spaced 15cmŠ20cm(3Š4 pixels) from the center source,
as shown in Figure 3a. Their source powers are fromŠ9.71
to 4.27dB (x�

1 < x�
2 < · · · < x�

5) with 14dB dynamic range.
The background noise variance isŠ1.25dB(� 2 = 0.75), and
the averagingS NR= 0dB.

Figure 3 shows that the beamforming just gets a very
confused image due to its low resolutions at 2500Hz; the
DAMAS fails to distinguish weak sources due to its sensi-
tivity to noise; the DR-DAMAS detects strong sources and
removes the noise interference, but it also eliminates weak
source; the CLEAN gets better spatial resolutions, but still
sensitive to noise; the CMF well estimates the noise vari-
ance andÞnds out all sources, but its resolutions are not high
enough; the SC-RDAMAS works faster and better than the
CMF, but proposed approach outperforms the others. It not
only better locates all sources, but also well estimates noise
variance. In the proposed approach,� = 1 in DE(x) model is

selected as Figure 1a shown. And the inßuence of regulariza-
tion parameter inS NR= 0 are shown in Figure 2: thanks to
noise estimation, proposed approach can achieve relatively
small power image reconstruction error� 2 even if 	 is very
small. As shown in Table 1, proposed approach has the min-
imal averaging power estimation error� x� = 1

K ||x̂ �
k Š x �

k||1
with x � = diag{E[s� s� H]} and� 2 = � x Šx̂ � 2

� x � 2 .
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Figure 2:Regularization parameter inßuence in proposed
approach, power image reconstruction error� 2 = � x Šx̂ � 2

� x � 2

Table 1:Power estimation error and noise variance estimationˆ� 2.

Powers x�
1 x�

2 x�
3 x�

4 x�
5 � x� � 2

ˆ� 2

Beamforming 9.30 7.57 1.49 1.02 0.45 3.97 115 -

CLEAN 4.24 1.36 2.98 0.52 0.12 1.80 1.46 -

DAMAS 1.00 1.00 1.00 1.00 0.30 0.86 0.06 -

DR-DAMAS 1.00 0.44 0.14 0.10 0.11 0.36 0.03 -

CMF 0.48 0.35 0.23 0.22 0.26 0.31 0.09 0.74

SC-RDAMAS 0.54 0.45 0.09 0.08 0.12 0.26 0.02 0.74

Proposed 0.32 0.43 0.09 0.02 0.07 0.19 0.01 0.75

5 Real data

Figure 4 shows conÞgurations of wind tunnel S2A [6].
The scanning region is 135×470cm2. There areT0 = 524288
snapshots,T = 204 segments,L = 2560 snapshots per seg-
ment. Wideband is 2400HzŠ2600Hzwith B = 21 frequency
bins. The results are shown by normalized dB images with
10dBspan. For corrections of propagation time� n,m and dis-
tancern,m, we apply equivalent source that antennam seems
to receive the signal from equivalent sourcen	 along a direct
line dn	 ,m during the same propagation time� n	 ,m, as if there
is no wind inßuence, as shown in Figure 4b.

After corrections, Figure 5a illustrates that the beamform-
ing just gives an fuzzy image of strong sources around the
front wheel, rearview mirror and back wheel; in Figure 5b,
the DAMAS greatly improve spatial resolutions of the beam-
forming result, however it gets many false targets in the air;
the DR-DAMAMS well eliminates most of false targets, but
it envitably removes weak sources on the front light, front
cover, and side windows; Figure 5d shows that the CLEAN
overcomes drawbacks of the DAMAS and DR-DAMAS, but
unexpected strong points are detected on the ground; in Fig-
ure 5e, the SC-RDAMAS obtains a result as good as the
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