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Abstract: Traditionally, probability distributions are used risk analysis to represent the uncertainty
associated to random (aleatory) phenomena. Themptees (e.g., their mean, variance, ...) of these
distributions are usually affected by epistemiatgsof-knowledge) uncertainty, due to limited expece
and incomplete knowledge about the phenomenatbkadistributions represent: the uncertainty frammwo
is then characterized by two hierarchical levelsun€ertainty. Probability distributions may be uged
characterize also the epistemic uncertainty afigaine parameters of the probability distributiddewever,
when sufficiently informative data are not availbhn alternative and proper way to do this mightp
means of possibilistic distributions.

In this paper, we use probability distributiongépresent aleatory uncertainty and possibilityriigtions to
describe the epistemic uncertainty associated @ gborly known parameters of such probability
distributions. A hybrid method is used to hieraceliy propagate the two types of uncertainty. Tésults
obtained on a risk model for the design of a flpootection dike are compared with those of a tiauotl,
purely probabilistic, two-dimensional (or double)oMe Carlo approach. To the best of the authors’
knowledge, this is the first time that a hybrid M®Carlo and possibilistic method is tailored togagate
the uncertainties in a risk model when the uncetydramework is characterized by two hierarchleakls.

The results of the case study show that the hybpgroach produces risk estimates that are more
conservative than (or at least comparable to) thbsgined by the two-dimensional Monte Carlo method

Keywords: hierarchical levels of uncertainty; possibility tiilsutions; epistemic dependence

1. INTRODUCTION

In risk analysis, uncertainty is typically distinglied into two types: randomness due to inheremihlvitity

in the system behavior (objective, aleatory, stetbaincertainty) and imprecision due to lack obkafedge
and information on the system (subjective, epistestate-of-knowledge uncertainty) (Apostolakis9Qp

We are interested in the framework of two hierazahlevels of uncertainty, referred to as “levels#tting
(Limbourg and de Rocquigny, 2010): the models &f #dteatory events (e.g., the failure of a mechénica
component, the variation of its geometrical dimensiand material properties, ...) contain parameesgs,
probabilities, failure rates, ...) that are epistatticuncertain, i.e., known with poor precision.

In current risk analysis, both types of uncertaiate represented by means of probability distrdngi
(USNRC, 2009). In such a case, the uncertainty ggafion can be carried out by a two-dimensional (or
double) Monte Carlo (MC) approach (Rao et al., 308lbwever, in some situations, the lack of conmlet
knowledge, information and data impairs the prolistlu representation of epistemic uncertainty. imber

of alternative representation frameworks have h@eposed to handle such cases (Aven and Zio, 2010),
e.g., fuzzy set theory (Klir and Yuan, 1995), evide theory (Helton et al., 2008), possibility the(Baudrit

et al., 2006 and 2008) and interval analysis (Feetal., 2007).

In this paper, we use probability distributiongdescribe aleatory uncertainty and possibility distions to

describe the epistemic uncertainty in the pararsetérthe (aleatory) probability distributions. Ftire

propagation of this hybrid (probabilistic and pbdgstic) uncertainty representation, the MC tecius

(Kalos and Withlock, 1986) is combined with theemdion principle of fuzzy set theory (Zadeh, 1965

“level-2" hierarchical setting (Baudrit et al., 200 This is done by i) a fuzzy interval analysigtocess the
uncertainty described by possibility distributicarsd ii) a repeated MC sampling of the random véemio

process aleatory uncertainty (Baudrit et al., 2@8aldi and Zio, 2008).

The joint hierarchical propagation of probabilisticd possibilistic representations of uncertaistgpplied
to a risk model for the design of a flood protestidike (Limbourg and de Rocquigny, 2010); the



effectiveness of the hybrid method is comparedhad of a traditional two-dimensional MC approach.tfie
best of the authors’ knowledge, this is the fimstet that a hybrid Monte Carlo and possibilistic hoet is
embraced to propagate the uncertaintiesniskamodelwhen the uncertainty framework is characterized by
two hierarchicallevels.

The remainder of the paper is organized as followwsSection 2, the hybrid method for uncertainty
propagation is described; in Section 3, the floaetleh considered for the uncertainty propagatiok tas
presented; in Section 4, the results of the joiigranchical propagation of aleatory and epistemic
uncertainties through the flood model of Sectiorar®l the comparison with the two-dimensional MC
approach are reported and commented; in Sectisonse conclusions are provided.

2. JOINT HIERARCHICAL PROPAGATION OF ALEATORY AND E PISTEMIC
UNCERTAINTIES IN A “LEVEL-2" FRAMEWORK

We consider a model whose output is a funcéton f(Y1 Y, Y) of n uncertain variable¥, j =1, 2, ...,n,

whose uncertainty is described by probability disttions p;:(yl),p:j(yz),...,p;:(yj ) P (), Where
0,=16..6, ,...,Hj‘m‘},j =1, 2, ...,n, are the vectors of the corresponding internahupaters. In a “level-2”
framework, the parameters, =16, Hj,z,...,ej,m‘} , 7 = 1, 2, ..., n, of the probability distributions

i1

{p:: (y):i= 12,~--,k} are affected by epistemic uncertainty. We desditilese uncertainties by possibility

distributions=" (9,) ={719“ (9,,1), ' (91,2),...,719‘”' (ej‘m‘)},j =1, 2, ...,n: the rationale for this choice lies in the

fact that a possibility distribution definedamily of probability distributions (bounded above antbieby
the so called possibility and necessity functioaspectively, that are special cases of plausitalitd belief
functions), which represents the expert’s inabitityselect asingle probability distribution and, thus, the
imprecisionin his/her knowledge of the uncertain parameters.

In extreme synthesis, the propagation of the hybnicertainty information can be performed by corirtgn
the Monte Carlo (MC) technique (Kalos and Withlo&éR86) with the extension principle of fuzzy intakv

analysis (Zadeh, 1965) by means of the followingnséeps (Baudrit et al., 2008):
1. select one possibility valuell (0, 1] and the corresponding cu§', A’ ,...,A’" ,j =1, 2, ...,n, of
the possibility distributions:” (6,) = {719 (6?],1),719'-2(9],2),...,779‘”' (Hj,m‘)} of the epistemically-uncertain
parameter® ,j =1, 2, ...,

2. randomly samplen intervalsb/ija,y;va =12, ...mj=1,2, ...n, of the “probabilistic” variables

Y. ,j=1,2,...n, from the probability distributionép;; (y):i= 12,...,n}, letting the epistemically-

[

uncertain parameterg ={9. 6., ,...,ej‘m‘} range within the correspondimgcuts A+, A% ..., A",

L

=1, 2, ...,n(found at step 1. above);
3. repeat step 2. above for another possibility valué (0, 1].

For clarity, in Figure 1 the procedure for samplithg i —th random intervalb/iva,y;vaj for the generic
uncertain variabler, is illustrated. Let us suppose that the probabiiiistribution ofY, is normal with
parameters), ={6?j vl,Bjyz}z{u, o}; the meanu =6, is represented by a triangular possibility disttibn with
corec = 5 and supporta, b] = [4, 6] and the standard deviatian=6,, is a fixed point-wise value
(o=6,,=4). With reference to the operative procedure oetliabove, a possibility value (e.g.,a =03

in Figure 1 left) is selected and the correspondiogt for =6 , is found, i.e.,@a,ﬁajz[ijlya,é_?jvm] =[4.3,
5.7] (step 1. above). The cumulative distributiundtionsFOT' are constructed using the upper and lower

values ofy , ie., u =6, ,=43 and ﬁg:é,m:5-7 (Figure 1 right); then, a random number (e.g.,

—jla

u; =07 in Figure 1 right) is sampled from a uniform disttion in [0,1) and the interveﬁ/ijya,y;vaj is
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Figure 1. Left: triangular possibility distributiasf the meanu of the normal probability distribution of ~

N(H4, 4) = N(0); in evidence thex-cut of levela

0.39,,,.61|=|u .7,|=[4.3, 5.7]. Right: cumulative

distribution functions ofY; built in correspondence of the extreme valyes 43 and z, =57 of the a-cut
lv..m,] of p.

For each setA contained in the universe of discoutde of the output variable , the output of the
algorithm is represented by a set of plausibilimdtions{PI, (A) :aD(O,l]} and a set of belief functions
{Bel,(A) :aD(O,l]}, obtained in correspondence of tifferentpossibility valuesx L1 (0, 1] selected at step
1. above; these sets of functions are then symnsinto the plausibilityPl(A) and beliefBel(A) of A as

jPIa(A)da and_[BeIa(A)da, respectively (Baudrit et al., 2006). Notice tRdA) andBel(A) bound above

and below, respectively, the probabilRfA) of A, i.e.,Bel(A) < P(A) < PI(A). In this view, the likelihood of
the value f(Y) passing a given threshold can then be computed by considering the belief thed

plausibility of the setA=(-,2|; in this respectBel( f(Y) 0(-,2]) and PI( f(Y)O(-,2]) can be interpreted
as bounding cumulative distributiorz) = Bel( f(Y) O(-,2]), F(2) =PI(f(Y)D(-,2]).

Finally, it is worth noting that performing an imial analysis omm-cuts assumetotal dependencbetween
the uncertain parameters. Actually, this procedumplies strong dependence between the information
sources (e.g., the experts or observers) that guppl input possibility distributions, because g@me
confidence levell — a ) is chosen to build the-cuts for all the uncertain parameters (Baudrélgt2006).

3. CASE STUDY: FLOOD PROTECTION DESIGN
3.1. The model

The model considered calculates the maximal watedl lof the river (i.e., the output variable of thedel,
Z.), given several parameters (i.e., the input végmbf the model) (Limbourg and de Rocquigny, 2010)

Z =

zv+[

K,0B0y(z, -2,

)/LJ

(1)

where: Q is the yearly maximal water discharge®@)y z_and z, are the riverbed levels (m asl) at the
upstream and downstream part of the river undeestigation, respectivelyk, is the Strickler friction

coefficient; B and L are the width and length of the river part (m),pexdively. The input variablesre
classified as followsconstantsB =300m, L =5000m; uncertain variablesQ, Z_,Z, ,K..



3.2. The input variables: physical description andepresentation of the associated uncertainty
In this Section, a detailed description of the utae input variables is given together with thelaxation
of the reasons underlying the choices of their igtson by probability and possibility distributisn

3.2.1. The yearly maximal water flo®,
The Gumbel distributiorGun(q|a,ﬁ) is a well-established probabilistic (aleatory) mbfbr maximal flows

(Limbourg and de Rocquigny, 2010):

b e 5 o %5

The extreme physical bounds on variaQleare (Limbourg and de Rocquigny, 201Q); =10m?¥s, which
is a typical drought flow level (irrelevant withinflood study);Q,., =10000m%/s, which is three times larger
than the maximal flood ever occurred.

The parameterg and g in (2) are affected by epistemic uncertainty; heevea large amount of data (i.e.,
149 annual maximal flow values) is available forfpaming statistical inference on them. In partaulthe
point estimatesz, and iz, and the corresponding standard deviatiGpsand g, have been obtained for the
parametersa and g of the Gumbel distribution (2) by performing Maxim Likelihood Estimations
(MLESs) with the 149 data available: the method prasided 2, =1013m’/s, i1, =558m’/s, &, =48m’/s and
0,=36 m?/s (Limbourg and de Rocquigny, 2010). A probabdisteatment of this epistemic uncertainty has

been proposed in the original paper by Limbourg atel Rocquigny (2010): in particular,
a~p°(a)=N(g,,6,)=N(101348) and 8~ p*(8) = N(2,.6,)= N(55836).

In this paper, the Gumbel shape of the aleatorypaditity distributions (2) is retained but the dpigic
uncertainty on the parameters is represented irsitpbstic terms. To do so the normal probability
distributions p“(a) and p”(B) used in Limbourg and de Rocquigny (2010) are foansed into the

a B
ossibility distributions(a) and 77(3) by normalization i.e., 7°(a =M, m\p =M. The
possiily () and (5 by (= T ()= PO
supports of the possibility distributions®(a) and 7°(8) are set to[z, -46,, 2, +5,]=[965 1061 and
|, -6,,0,+6,]=[523594, respectively, according to the suggestions byddurg and de Rocquigny
(2010).

3.2.2. The upstream and downstream riverbed leX¥glandZ,
The minimum and maximum physical bounds on varg@lgandz, arez A =535m andZz,  =48m

(given by plausible lower geomorphologic limits éoosion) andz___ =57m andZz, _ =51m (given by

plausible upper geomorphologic limits to sedimaaigt respectively. Normal distributions truncatgdhe
minimum and maximum physical bounds have been teglein Limbourg and de Rocquigny (2010) to
represent the aleatory part of the uncertainty, Ze~N(y,,,0,,) and Z,~N(u,,0,,) . An amount of 29 data
has been used in the reference paper by LimbouwtgdarRocquigny (2010) to provide the point estimate
[, =5503m, j,, =5019m, &, = 045m, g, = 038m for parameterg,, , u,,, o,, ando,, , respectively, by
means of the MLE method. However, according to lomig and de Rocquigny (2010) there is large
uncertainty about the shape of the probabilityrithstions of Z_ andz, ; as a consequence the authors
embrace a conservative “level-2”, using the MLE mo€ltto provide also standard deviations as a measur
the uncertainty on the point estimatgs, i, , J,, andd,,: in particular,g, =008, g, =007, g, =006

and g, =005. Using this information, Limbourg and de Rocquid@910) model the epistemic uncertainty

associated to the parametess, , u,, , o,, and g, by normal distributions, i.e.y, ~ N([/Zm,&[,m),

v,min

U~ N(,[/ZV,&,}N) , 0,0~ N(sz,ﬁﬂm) ando,, ~ N(a

zZv?

g, ).

In this paper, the shapes of the aleatory prolbilistributions forz, and z,, i.e., N(4,,,0,,) and
N(u,.0,,), are kept unaltered with respect to those of Liomgaand de Rocquigny (2010); on the contrary,
the information produced by the MLE method on patrs s, , 1, , 0,, ando,, , i.e., the point estimates



My iy, s O, 0,, and the corresponding standard deviatiéps 4, , g, , J, , is used to build possibility
distributions fory,, , u,,, o,, ando, by means of the Chebyshev inequality (Baudrit Bxatbois, 2006).

The classical Chebyshev inequality defines a bitawke@pproximation on the confidence intervals abu
the known mearu of a random variabl¥, knowing its standard deviatiam. The Chebyshev inequality

can be written as follows:
PGY—qska)zl—k—lz for k>1. ()

Formula (3) can be thus used to define a possilditribution 7 that dominates any probability density
function with given mean: and standard deviatiom by considering interval[su—ka,y+ ka] asa-cuts of

n and lettingz(u - ko) = n{u + ko*)=k—12=a. This possibility distribution defines a probatyilfamily which

has been proven to contat probability distributions with meap and standard deviatiom (Baudrit and
Dubois, 2006).

In this case, the point estimatg@s,, i, , ,, and g, produced by the MLE method, are used in (3) as the
means of the parametes,, u,,, o,, ando,,, whereas the erroi8, , 6, , 0, andg, associated to the
estimatesi,., 4,,, 7,, andg,, are used in (3) as the standard deviations op#vameterg,, , 4, , o,
and o,, in order to build the corresponding possibilitgtdbutions7“~, 7+, n°~and 7~ ; the supports of
the possibility distributions are obtained by exlieg two times the standard deviatiép , g, , J, and

g, in both directions with respect to the estimates i, , ,, andd,,.

3.2.3. The Strickler friction coefficienks
The Strickler friction coefficienk, is perhaps the most critical source of uncertaiatually, it is a

simplification of a much more complex hydraulic rebdrhe absolute physical limits &f, are [a,b]=[5,60]
(Limbourg and de Rocquigny, 201(; <5 corresponds to an extremely sinuous shape ofdhal cwith
large dents and strong vegetatiof;=60 corresponds to a canal with smoothest earth syrfactilinear,
without any vegetation.

There is an underlying natural variability in thection coefficientK, since it is affected by unpredictable
events modifying the river status (erosion/sedimgon, etc.): this variability is plausibly infedeas a
normal distribution, i.e.K_~ N(g.,0,.) (Limbourg and de Rocquigny, 2010). Unfortunatelye mean
value y, . of this Gaussian distribution is highly uncertaand difficult to measure; actually, direct
measurement is impossible and data may only bevett through indirect calibration noised by sigmaht
observational uncertainty: this is reflected inyoal very small series of 5 data sets available wittb%
noise (Limbourg and de Rocquigny, 2010). The sampan/,_ and standard deviatiofi of these five
data sets equal 27.8 and 3, respectively. In daeeflect the full amount of imprecision generatsdthe
indirect measurement, the minimal sample mggn= 2363 and the maximal sample meag, = 3197 are

also calculated, all measurements being conseelgtisssumed to be biased in the same direction.
Moreover, since the low sample size adds anothegtstatistical” epistemic uncertainty to thelwes /.

and i, the 70% confidence bounds on the mean estimatesand i are also computed as

[zmm—a“:zzs and [zmm—a“:333, respectively. In Limbourg and de Rocquigny (201@hese

s s

considerations result in the following uncertaigtyantification fork_:

- UK O-Ks =

\/gs L+ N [ 223333]. (4)

Ks - N(/'IKS’UKS) 1 Wlth UKS = OA_KS = 3 and /'IKS D|:[Imin

In this paper, the shape of the aleatory probgbilistribution ofK_, i.e., N(x,.,0..) in (4) is retained;
however, differently from the original paper, a gibdity distribution is associated tg,.. In particular, a
trapezoidal possibility distribution is here proposed: the mup is chosen to be



[ab]:{[/min —%,ﬁmaﬁ%} =[ 223333 as in (4); however, in this paper additional infiation is provided
concerning the most likely values pf_ exploiting the available data set: in particukince the core of the
trapezoidal distribution contains the most likelglues of the parameter, , in this case it is set to

[c,d] :{[1& ‘%’fk + :7/%} =[ 265,291], i.e., the interval obtained by adding/subtractmghe sample mean

k.. =278 (which is assumed to be theost likely valudor p, ) the “statistical” epistemic uncertainty due to

the low sample size (i.e., the quanu%).

4. APPLICATION

In this Section, the following approaches are adgr®id and compared in the task of hierarchically
propagating aleatory and epistemic uncertainties ‘ilevel-2” framework: i) the hybrid Monte CarlM(C)

and possibilistic approach of Section 2; ii) a thimensional (double) MC approach: a) assuming
independencédetween the epistemically-uncertain parameterthefaleatory probability distributions; b)
assumingtotal dependencédetween the epistemically-uncertain parameterghef aleatory probability
distributions. This choice has been made to perfatfiamir comparison with the hybrid MC and possé#biti
approach, which implicitly assumes by constructiotal dependence between the epistemically-uncertai
parameters (see Sectiorl.2)

It is worth noting that the probability distributis here used in the two-dimensional MC approaclQfpz,,
and z, and for the corresponding epistemically-uncerfanameters are the same as those proposed in the

original paper by Limbourg and de Rocquigny (20{&)d recalled in Section 3.2.1 and 3.2.2); the only
exception is represented by the probability distign for 4., which for consistency and coherence of the

comparison is here obtained by normalization oftthpezoidal possibility distribution describedSection

3.2.3, e, p" () = )
J‘n#KS (/'IKS) dﬂKs

a

For simplicity, we start by comparing approaches iand ii.b. above., i.e., double MC assuming
independence and total dependence between thetaingearameters, respectively. Figure 2 top leftvwah
the upper and lower cumulative distribution funeticof the model output, obtained by the double MC

approach assuming independence (ii.a) and totaragmce (ii.b), respectively. In this case, assgrtotal
dependence between the uncertain parameters is\gbdead to a smaller gap between the upper amerlo
cumulative distribution functions of the model auitz, than assuming independence. This can be easily

explained by analyzing the input-output functionalrelationship  considered, ie.,

3/5
Z,=27, { KB D\/((;m =7} L] in (1): it can be seen that one of the input \@es (i.e.,Q) appears at the
numerator of the expression, whereas others (eandz ) appear at the denominator, and another one
appears both at the numerator and at the denomifiag Z,). In such a case, the highest possible values
for the model outpuz, are obtained with @ombinationof high values oboth Q and z, (i.e., in other
words, high values of the corresponding uncertanametersr , 8, u, ando,, ) andlow values oboth K

and Z_ (i.e., in other words, low values of the corregfiog uncertain parametegs_, o,., 4, ando,,);
conversely, the lowest possible values for the modéput Z, are obtained with a combination of low
values of bothQ andz, and high values of botk, andz_. These extreme situations (which give rise to

LIt is very important to note that the condition wftal epistemic (or state-of-knowledge) dependebeeveen
parameters of risk models is far from unlikely. Feotample, consider the case of a system contamingmber of
physically distinct, but similar/ nominally idendiccomponents whose failure rates are estimateddans of the same
data set: in such situation, the distributions dbswy the uncertainty associated to the failuréesahave to be
considered totally dependent (Apostolakis and Kapl®81; USNRC, 2009).



the largest separation between the upper and laweawlative distribution functions, i.e., to the rhos
“epistemically-uncertain” and, thus, conservativeese&), can be obtained only in case ii.a above, i.e.
assuming independence between the epistemicallgriamc parameters. Actually, if a pure random
sampling is performed among independent uncertaiampetersall possiblecombinationsof values can be

in principle generated, since the entire rangesapiability of the uncertain parameters can be evqu
independently: thus, in some random samples, hadgeg ofQ and Z, may be combined by chance with

low values of bothK, andz_, whereas in other random samples low values di oand Zz, may be
combined by chance with high values of béathandz_ . Conversely, such “extreme” situations cannot

occur if there is total dependence between thertaingparameters (i.e., case ii.b above). Actuatiysuch a
case high (low) values of both andz, canonly be combined with high (low) values of both andz_,

giving rise to values of outpu, which are lower (higher) than the highest (lowes3sible: in other words,

the separation between the upper and lower cumaldtstribution functions produced in case ii.lalways
smallerthan that produced by the “extreme” situationsdbed above (which are possilaely in case ii.a).

A final, straightforward remark is in order. Thens@erations made above about what combinations of
parameter values would lead to the most conser/agisults (i.e., to the largest gap between themuapd
lower cumulative distribution functions) are stiyctlependent on the input-output relationship coersd:
obviously, adifferent model (with different functional relationships betweeampiits and outputs) would
requiredifferent combinationsf input values in order to obtain the most conseve results. For example,
for the hypothetical modek =(x* y)/z the most conservative results (i.e., the largesamation between the

upper and lower cumulative distribution functionspuld be obtained by imposintptal dependence
betweenx andy andoppositedependence betweenand bothx andy .

We now move on to compare i. and ii.a. Figure 2 tight shows the upper and lower cumulative
distribution functions of the model outpdf obtained by the double MC approach assuming inugece

between the uncertain parameters (case ii.a) angl&usibility and belief functions produced by thbrid
MC and possibilistic approach (case i). The resaésvery similar, which is explained as followgsEof

all, there is obviously a strong similarity betwe#re shapes of the probability distributions of the
epistemically-uncertain parameters used in the l@dothC approach and the corresponding possibility
distributions used in the hybrid approach. For gxamthe ranges of variability of the uncertaingraeters
are the same for both the probability and the bdggidistributions considered (see Sections 322.3); in
addition, some of the possibility distributions dayed in the hybrid approach (e.g., those of patarmser

and g of the Gumbel distribution foiQ ) are obtained by simple normalization of the pimolis

distributions employed in the double MC approackecfl®n 3.2.1); finally, the trapezoidal probability
distribution used in the double MC approach for $tackler friction coefficientk, is obtained by simple

normalization of the trapezoidal possibility dibtrtion proposed in the present paper and desciitbed
Section 3.2.3. In addition to the similarity betwede probability and possibility distributions ctatered,
the second motivation for the similarity betweea thsults lies in the characteristics of the twgoathms
used to propagate the uncertainties. In the dddleapproach, a plain random sampling is performechf
the probability distribution of the epistemicallpaertain parameters, which are considered indepe¢nale a
consequence of this independence, in prinagiipossiblecombinationsof values of the parameters can be
sampled, since the entire ranges of variabilitthef parameters are exploneshdomlyandindependentlyln
the hybrid approach, the same confidence leveks chosen to build the-cuts for all the possibility
distributions of the uncertain parameters; thea, rtinimum and maximum values of the model output

are identified letting the uncertain parametergeandependentlyvithin the corresponding-cuts (step 2. of
the procedure in Section 2): thus, even in this,wance a possibility levelr is selectedall possible
combinationsof parameter values can be explored, sincentbets of all the parameters agghaustively
searched to maximize/minimize the model output

As final comparison, Figure 2 bottom shows the u@pel lower cumulative distribution functions okth
model outputz, obtained by the double MC approach assuming ttgpéndence between parameters (case
ii.b) and the hybrid MC approach (case i.) (whissuanes total dependence between parameters). Reom t
consideration made above it is clear why the gegmialler between the cumulative distributions ia tvo-
dimensional MC approach assuming total dependert@eln the uncertain parameters (case ii.b) than



between the plausibility and belief functions proeii by the hybrid approach (casé igctually, in case ii.b
only a limited set of combinations of uncertaingraeter values can be randomly explored, whereassea

i. once a value forr is selected, all possible combinations of uncerpErameter values are exhaustively
searched to maximize/minimize the output (givingerto a larger separation between the plausilality
belief functions). In this respect, it is with rédceg that the hybrid and the double MC approadegsesent
the epistemic uncertainty in radically different ywan particular, in the hybrid method, possibility
distributions are employed which identifyfaamily of probability distributions for the epistemicaliycertain
parameters; on the contrary, in the double MC apgrponly asingle probability distribution is assigned to
represent the epistemic uncertainty associatduetparameters.
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Figure 2.Comparison of the CDFs & obtained by: i) the two-dimensional MC approaamsidering both

independence and total dependence between therapmatly-uncertain parameters (top, left); ii) thdrid

MC and possibilistic approach and the two-dimerslidhC approach assuming independence between the

epistemically-uncertain parameters (top, righi)tiie hybrid method and the two-dimensional MC moet
assuming total dependence between the epistemigatigrtain parameters (bottom).

A final remark is in order with respect to the féswbtained. Since in this case the hybrid MC and
possibilistic approach gives rise to a larger sap@nm between the plausibility and belief functiaghan the
double MC approach (assuming total dependence batthe epistemically-uncertain parameters), itlman
consideredmore conservativeAs a consequence, embracing one method insteatheofother may
significantly change the outcome of a decision mgkprocess in a risk assessment problem involving
uncertainties: this is of paramount importanceystams that are critical from the safety view po@g., in

the nuclear, aerospace, chemical and environmgel@d$. A quantitative demonstration of this stagernis
given in what follows.

The final goal of the uncertainty propagation isiegermine i) the dike level necessary to guaraatgeen
flood return period or ii) the flood risk for a @n dike level. With respect to issue i) above,dhantity of
interest that is most relevant to the decision makéhe 99% quantile of_, i.e., Z>*°, taken as the annual
maximal flood level. This corresponds to the leskh “centennial” flood, the yearly maximal watewvél
with a 100 year-return period. With respect to ésBuabove, the quantity of interest that is medévant to

2 As before, notice that this comparison is fair &aee both methods assume total dependence betleen t
epistemically-uncertain parameters.



the decision maker is the probability that the meatiwater level of the riveE, exceeds a given threshold
z* e, P(z, = z*); in the present report,* = 55.5 m as in Limbourg and de Rocquigny (201@bl& 1
reports the lower 2°°_) and upper £°°_) 99" percentiles obtained from the two limiting cumivat

clower cupper

distributions and the correspondingwerBoundz, > z*) andUpperBoundZ, > z*). In addition, as synthetic
mathematical indicators of the imprecision in tmewledge ofz, (i.e., of the separation between the lower
and upper cumulative distribution functions), tbikdwing percentage widths have been reported:

709 _ 709

o W, = of the interval[z‘”"’ z% ] with respect to the percentig™ obtained by a

099 clower ? “ gupper, ¢, prob
c, prob

traditional, one-dimensional pure probabilistic eg@eh of reference, i.e., an approach where the

parameters of the aleatory probability distribusicarefixed, known valuegsee Limbourg and de

Rocquigny (2010) for details);

_ UpperBounc@Zc 2 z*)— LowerBounc@ZC 2 z*)
P(Zc 2 Z*)prob

UpperBoundz, > z*)] with respect to the probabilitp(z, > z*)prob obtained by a one-dimensional

pure probabilistic approach of reference (see Lumg@nd de Rocquigny (2010) for details).

. W*

of the interval [ LowerBoundz, =z*)

Table 1. Comparison of the lower and upper valdes percentiles and threshold exceedance probability
obtained by the three method analyzed; the resfgeptircentage widthd of the intervals are also reported.

Method 2% [m] (Pure prob. = 55.34m) P[Z.> 55.5](Pure prob. = 0.0076)
099 099 LowerBound, .
lzc,lower ' Zc,upper ] WZC[%] [UpperBound] w [%]
Hybrid MC and possibilistic | 15, 79 56 03] 2.2 [0.0024, 0.0241] 286
(total dependence)
Double MC (independence) [54.56, 56.06 2.7 [0.0@LB8293] 368
Double MC (total dependencs) [54.05, 55.50] 0.8 00a2, 0.0111] 91

The considerations reported above are confirmegtetis a similarity between the values of the iattics
relative to the hybrid MC and possibilistic approgcase i.), and to the double MC approach assuming
independence among the uncertain parameters (caseon the contrary, there is a significant diéiece
between the values of the indicators relative tohibrid method and to the double MC approach asgum
total dependence between the uncertain parametase (i.b). In particular, one additional consitiera
concerning this latter comparison is worth to beedoAnalyzing, for instance, the probability thaet
maximal water level of the rivex, exceeds the threshold = 55.5 m, P[Zc >z = 55.5], it can be seen that

the hybrid approach is much more conservative thandouble MC approach assuming total dependence
between parameters: in fact, for instance, the uppends ofP[ZC > z*] are 0.0241 and 0.0111 for cases i.

and ii.b, respectively. Thus, in this case the afséhe double MC approach would lead to underedtrog
about 54% the probability that the maximal wateelef the riverZ, exceeds the threshold = 55.5 m: in

other words, it would lead to underestimate by &al4i% the “failure probability” of the dike and, dte
same time, the flood risk. The same consideratadsifor the dike level necessary to guaranteeCay&@r-
return period represented by the 99% quarzijié of the water level of the river; for example, tingper

bounds ofz** are 56.03m and 55.50m for cases i. and ii.b, cts@dy. Thus, also in this case the use of the

double MC approach would lead to a slight underestion of the dike level necessary to guarante8(a 1
year flood return period. Therefore, even if theille MC approach purposedly tries to separate hiditia
from imprecision, differently from the hybrid apjih, it treats lack-of-knowledge in the same wayt as
treats variability (i.e., using probability distutions): as a consequence, in some cases, it nhay faoduce
reliable and conservative results, which can rgisat concerns from the safety point of view.

5. CONCLUSIONS
A hybrid method has been applied for the joint piggtion of probabilistic and possibilistic uncenmtgi
representations onto a flood model in a “level42iniework. The results obtained have been compaited w
those produced by a double MC approach. In paaticthe following analyses have been performed:
1. a comparison between two-dimensional MC approachesuming total dependence and
independence between the parameters, respecthighylighting that in this case study, assuming



independence among parameters leads to a largebbayageen the cumulative distributions of the
model output than assuming total dependence;

2. a comparison between the hybrid approach and tleedimensional MC approach assuming
independence between the epistemically-uncertaianpeters, showing that in this case study, the
cumulative distribution functions of the model autproduced by the two approaches are similar;

3. a comparison between the hybrid and the two-dinoeasiMC approach assuming total dependence
between the parameters, showing that the gap bettheeplausibility and belief functions of the
model output produced by the hybrid approach igdiathan the gap between the upper and lower
CDFs produced by the two-dimensional MC method.,(itke results produced by the hybrid
approach arenore conservatiye This has been quantitatively confirmed by wayttef risk model
for the design of a flood protection dike througie tomputation of i) the dike level necessary to
guarantee a 100 year flood return period and @)ftbod risk for a given dike level. In fact, both
guantities have been underestimated by the doulle dfproach with respect to the hybrid
approach.

The considerations above confirm that embracinfeiht methods for jointly propagating aleatory and
epistemic uncertainties may generate differentligstinus producing significant changes in the onotes of
decision making processes in risk assessment pngbiavolving uncertainties: this is of paramount
importance in systems that are critical from thietyaview point, e.g., in the nuclear, aerospatentcal
and environmental fields.

It seems advisable to conclude that, if nothingnewn about the dependence or independence redhtjpn
between the epistemically-uncertain parametersnay be advisable to resort to the hybrid MC and
possibilistic approach because its risk estimatesrare conservative than (or at least comparapleéhbse
obtained by the double MC approach assuming deperd@r independence) between the epistemically-
uncertain parameters.
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