M. West, Approximating posterior distributions by mixture, J. Roy. Stat. Soc. B Met, vol.55, issue.2, pp.409-422, 1993.

P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-732, 1995.
DOI : 10.1093/biomet/82.4.711

C. Andrieu and A. Doucet, Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC, IEEE Transactions on Signal Processing, vol.47, issue.10, pp.2667-2676, 1999.
DOI : 10.1109/78.790649

S. Richardson and P. J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.4, pp.731-792, 1997.
DOI : 10.1111/1467-9868.00095

M. Stephens, Dealing with label switching in mixture models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.62, issue.4, pp.795-809, 2000.
DOI : 10.1111/1467-9868.00265

M. Sperrin, T. Jaki, and E. Wit, Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models, Statistics and Computing, vol.62, issue.2, pp.357-366, 2010.
DOI : 10.1007/s11222-009-9129-8

G. Celeux and J. Diebolt, The SEM algorithm : a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Comp. Statis. Quaterly, vol.2, pp.73-82, 1985.

Y. Bai, R. V. Craiu, and A. F. Di-narzo, Divide and Conquer: A Mixture-Based Approach to Regional Adaptation for MCMC, Journal of Computational and Graphical Statistics, vol.20, issue.1, pp.1-17, 2011.
DOI : 10.1198/jcgs.2010.09035

R. N. Davé and R. Krishnapuram, Robust clustering methods: a unified view, IEEE Transactions on Fuzzy Systems, vol.5, issue.2, pp.270-293, 1997.
DOI : 10.1109/91.580801