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Validity of the phase approximation for coupled

nonlinear oscillators: a case study∗

Alessio Franci1, William Pasillas-Lépine2, and Antoine Chaillet3

Abstract— Motivated by neuroscience applications, we rigor-
ously derive the phase dynamics of an ensemble of intercon-
nected nonlinear oscillators under the effect of a proportional
feedback. We individuate the critical parameters determining
the validity of the phase approximation and derive bounds on
the accuracy of the latter in reproducing the behavior of the
original system. We use these results to study the existence
of oscillating phase-locked solutions in the original oscillator
model.

I. INTRODUCTION

The use of the phase dynamics associated to nonlinear

oscillators is a widely accepted tool to rigorously analyze

complex collective phenomena like synchronization, pattern

formation, and resonance. Examples of such behaviors are

found, for instance, in biology [1], physics [2], and engi-

neering [3], [4], [5], [6], [7], [8]. However, the reduction of

periodic oscillatory dynamics to the associated phase model

is relevant only if the inputs and disturbances are small

compared to the attractivity of the limit cycle. This problem

is of crucial importance in control engineering applications,

where inputs plays a fundamental role and some performance

or security criteria have to be satisfied.

Motivated by neuroscience application, we have recently

developed a feedback control law that aims at altering the

synchronization in an interconnected neuronal population.

Under some assumptions, the phase dynamics of the closed-

loop system was analytically computed and sufficient condi-

tions for different control objectives were derived [9], [10].

Nevertheless, the relevance of these results for the original

ensemble of nonlinear oscillators (modeling the neuronal

population) is not straightforward due to aforementioned

intrinsic limitations of the phase reduction.

In this paper, we generalize the oscillator model introduced

in [9] and study its phase dynamics. This generalization

permits to describe a wider range of coupling and feedback

schemes and embraces in a unified model different inter-

esting special cases. Based on classical results on normal

hyperbolic invariant manifolds, we rigorously derive the

closed-loop phase dynamics and individuate the parameters

determining its validity, along with explicit bounds on its
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accuracy in reproducing the behavior of the original system.

These results are used to study the existence of phase-locked

solutions in the original nonlinear oscillator population.

More precisely, we show that, if the coupling and feedback

strengths are sufficiently small, then generically no phase-

locked solutions oscillating with non-zero frequency can

exist.

Notation and preliminaries

R
n
≥0 denotes the closed orthant {x ∈ R

n : xi ≥ 0, i =
1, . . . , n}, whereas Rn>0 denotes the open orthant {x ∈ R

n :
xi > 0, i = 1, . . . , n}. Tn denotes the n-torus.

Norms: Given n,m ∈ N and A =
{Aij}i=1,...,n ,j=1,...,m ∈ R

n×m, we denote the Frobenius

norm of A as |A| :=
√

∑n
i=1

∑m
j=1A

2
ij . When either n = 1

or m = 1, | · | is the Euclidean norm.

Splittings: Given a finite dimensional vector space V , a

splitting of V is a collection of linear subspace Vi ⊂ V , i =
1, . . . , l, such that V = ⊕li=1Vi, where ⊕ denotes the direct

sum. Given a linear application A : V → V , an A-invariant

splitting is a splitting V = ⊕li=1Vi such that AVi ⊂ Vi,

i = 1, . . . , l.
Tangent maps: Given a n-dimensional manifold M, we

denote its tangent space at x ∈ M as TxM, and similarly

for submanifolds. Given a set W ⊂ M and a map f : M →
R
m, we denote by f |W :W → R

m the restriction of f to W ,

i.e. f |W (x) = f(x) for all x ∈ W . The tangent application

(or differential, or linearization) of a C1 function f : M →
R
m is denoted as Df , i.e. in coordinate Df(x) = ∂f

∂x
(x).

Measure: The Lebesgue measure on R
n is denoted by µ,

and for almost all (∀a.a.) denotes the equivalence operation

with respect to this measure.

II. LANDAU-STUART OSCILLATORS WITH DIFFUSIVE

AND FEEDBACK COUPLING

We start by introducing the coupled oscillator system

under analysis. Given ρi > 0, i = 1, . . . , N , consider the

following dynamics on C
N

żi = (iωi+ ρ2i − |zi|2)zi+
N
∑

j=1

κije
iδij (eiηjzj − eiηizi)+ui,

(1)

where κ := [κij ]i,j=1,...,N ∈ R
N×N ,

ui :=

N
∑

j=1

γ̃ije
iφij

[

cosϕjRe(eiψjzj) + i sinϕjIm(eiψjzj)
]

,

(2)



and γ̃ := [γ̃ij ]i,j=1,...,N ∈ R
N×N . We also define

Φ := ([δij ]i,j=1,...,N , [ηi]i=1,...,N , [ϕi]i=1,...,N ,

[φij ]i,j=1,...,N , [ψi]i=1,...,N ) ∈ R
N×(2N+3) (3)

The dynamics (1) can be split in three parts. The term (iωi+
ρ2i−|zi|2)zi is the oscillator internal dynamics. It corresponds

to a stable oscillation of radius ρi and frequency ωi and

is commonly referred to as Landau-Stuart oscillator, which

represents a normal form of a supercritical Andronov-Hopf

bifurcation [11]. The second term constitutes a linear cou-

pling between the oscillators, where κije
iδij is the (complex)

coupling gain and where the phases ηi rotate the oscillator

contribution to the coupling. The last term ui constitutes

a feedback coupling term which injects the output of each

oscillator yj :=
[

cosϕjRe(eiψjzj) + i sinϕjIm(eiψjzj)
]

back in the network with complex gains Bij := γ̃ije
iφij .

The analysis of (1) is motivated by the two following

special cases:

Special case 1

The choice Φ = 0 and γ̃ij = βiαj , i, j = 1, . . . , N , for

some α := [αi]i=1,...,N ∈ R
N and β := [βi]i=1,...,N ∈ R

N ,

reduces (1) to

żi = (iωi + ρ2i − |zi|2)zi +
N
∑

j=1

κij(zi − zj) + βiy,

y :=

N
∑

j=1

αjRe(zj).

This dynamics constitutes an ensemble of diffusively coupled

Landau-Stuart oscillators under the effect of proportional

mean-field feedback, where β is the feedback gain and y is

the ensemble mean-field. Motivated by neuroscience applica-

tions, this model was recently used in [9], [10] to analyze the

behavior of an ensemble of diffusively coupled periodically

spiking neurons under the effect of an electrical stimulation

that is proportional to the ensemble mean membrane voltage.

In those works, the membrane voltage of each neuron is

represented by the real part of the associated oscillator,

whereas the imaginary part of the oscillation accounts for

the effects of other physical variables. More modeling details

can be found in [9].

The introduction of the phases Φ in (1) accounts for

possible imprecision in the association between physical

(voltages, conductances, ion concentrations, etc.) and math-

ematical (real and imaginary parts) variables. For instance:

• The phases [ηi]i=1,...,N rotate the oscillator contribu-

tions to the diffusive coupling. This permits to consider

the case when, in the simplification from the full cou-

pled neuronal limit cycles to the reduced ones, we can

not exactly associate the voltages and the other physical

variables of each oscillator to the real and imaginary

parts, respectively.

• The phases [δij ]i,j=1,...,N rotate the diffusive coupling

terms in such a way that the imaginary part of the

coupling influences the real one and vice-versa.

• Similarly, the phases [ϕi]i=1,...,N , [φij ]i,j=1,...,N , and

[ψi]i=1,...,N ) accounts for the same type of inaccuracies

in the feedback coupling. In particular, the phases

[ϕi]i=1,...,N permit to consider the case when the real

and the imaginary parts of the oscillations contribute to

the mean-field measurement with different gains.

Special case 2

Another interesting special case of (1) is given by the

normal form (A.4) in [12], which constitutes the basis

of many theoretical works on synchronization phenomena

between coupled oscillators [13], [14], [15], just to name a

few examples. Indeed, with the choice ϕi =
π
4 , ηi = ψi = 0,

and φij = δij , for all i, j = 1, . . . , N , the sum of the

coupling and feedback terms in Equations (1)-(2) can be re-

written as

N
∑

j=1

eiδij
[

(κij + γ̃ij)zj − κijzi
]

=

N
∑

j=1

(κij + γ̃ij)e
iδij

[

zj −
κij

κij + γ̃ij
zi

]

. (4)

Clearly, for κij = 0, we obtain a purely direct coupling,

which recovers the coupling term in Equation (A.4) of [12]

with κ̃i = 0. Otherwise, given κ̃i ∈ (0, 1], we let

κij

κij + γ̃ij
= κ̃i,

which is equivalent to asking

γ̃ij =
(1− κ̃i)κij

κ̃i
. (5)

By plugging (5) into (4), we can further transform the

coupling and feedback terms as

N
∑

j=1

(

κij+
1−κ̃i
κ̃i

κij

)

eiδij (zj−κ̃izi)=
N
∑

j=1

κ′ije
iδij (zj−κ̃izi),

where κ′ij :=
κij

κ̃i
, which recovers the coupling term of

Equation (A.4) of [12] with κ̃i ∈ (0, 1].

III. FORMAL REDUCTION TO THE PHASE DYNAMICS

The goal of this section is to derive the phase dynamics

of the closed-loop system (1)-(2). We start by writing the

oscillator states in polar coordinates, that is zi =: rie
iθi , for

all i = 1, . . . , N , where ri = |zi| ∈ R≥0 and θi = arg(zi) ∈
T 1. We stress that the oscillator phases θi are defined only

for |zi| = ri > 0. In these coordinates the dynamics (1)-(2)

reads

ṙie
iθi + iriθ̇ie

iθi = (iωi + ρ2i − r2i )rie
iθi+

N
∑

j=1

κije
iδij (eiηjrje

iθj − eiηirie
iθi) + ui

where

ui=

N
∑

j=1

γ̃ije
iφij

[

cosϕjRe(eiψjrje
iθj)+i sinϕjIm(eiψjrje

iθj)
]

.



By multiplying both sides of this dynamics by e−iθi

ri
, ex-

tracting the real and imaginary part, and using some basic

trigonometry, we get, for ri > 0, i = 1, . . . , N ,

θ̇i = ωi + fi(θ, r, κ, γ̃,Φ) (6a)

ṙi = ri(ρ
2
i − r2i ) + gi(θ, r, κ, γ̃,Φ), (6b)

where, for all i = 1, . . . , N ,

fi(θ, r, κ, γ̃,Φ) :=

−
N
∑

j=1

κij sin(δij + ηi) +

N
∑

j=1

κijrj

ri
sin(θj − θi + δij + ηj)

+
N
∑

j=1

γ̃ijrj

ri

[

sinϕj + cosϕj
2

sin(θj − θi + φij + ψj)

+
sinϕj − cosϕj

2
sin(θj + θi − φij + ψj)

]

gi(θ, r, κ, γ̃,Φ) :=

−ri
N
∑

j=1

κij cos(δij + ηi) +

N
∑

j=1

κijrj cos(θj − θi + δij + ηj)

+

N
∑

j=1

γ̃ijrj

[

sinϕj + cosϕj
2

cos(θj − θi + φij + ψj)

+
cosϕj − sinϕj

2
cos(θj + θi − φij + ψj)

]

which defines the phase/radius dynamics of (1)-(2) on TN ×
R
N
>0.

Let f := [fi]i=1,...,N and g := [gi]i=1,...,N . When the

diffusive coupling and the feedback are both zero, that is

κ = γ̃ = 0, we have f ≡ g ≡ 0. Hence, in this case,

equation (6) reduces to

[

θ̇

ṙ

]

= H(θ, r) :=

[

ω

r(ρ2 − r2)

]

(7)

where ρ := [ρi]i=1,...,N ∈ R
N . It is obvious that the N-torus

T0 := TN × {ρ} ⊂ TN × R
N
>0 is invariant for (7), since

all its points are fixed points of the radius dynamics in (7).

Moreover, it is normally hyperbolic as defined and proved

below.

Given an n-dimensional smooth Riemannian manifold M,

with metric 〈·, ·〉R, the solution of an autonomous dynamical

system

ẋ = F (x), x ∈ M, (8)

starting at x0 ∈ M at t = 0 is denoted as x(·, x0) everywhere

it exists. Let | · |R be the norm induced by the Riemannian

metric and let N ⊂ M be a smooth compact m-dimensional

submanifold. We define normal hyperbolicity of (8) at N as

follows [16], [17].

Definition 1. The dynamical system (8) is normally hyper-

bolic at N if the two following conditions are satisfied:

i) For all x ∈ N , there exists a DFx-invariant splitting

TxM = Nu
x ⊕ TxN ⊕Ns

x

of TxM over N . In this case, for all x ∈ N , denote

DFux := DF (x)|Nu
x

, DF 0
x := DF (x)|TxN

, and

DF sx := DF (x)|Ns
x

.

ii) We have either Nr
x = ∅, for all x ∈ N , r = s, u, or:

ii-a) inf
x∈N

inf
v∈Nu

x

∣

∣eDF
u
x v

∣

∣

R

|v|R
>max







1, sup
x∈N

sup
v∈TxN

∣

∣

∣
eDF

0

x v
∣

∣

∣

R

|v|R







ii-b) sup
x∈N

sup
v∈Ns

x

∣

∣eDF
s
x v

∣

∣

R

|v|R
<min







1, inf
x∈N

inf
v∈TxN

∣

∣

∣
eDF

0

x v
∣

∣

∣

R

|v|R







The two subspaces Nu
x and Ns

x are called the unstable

and the stable space of TxN with respect to the tangent

application of (8), respectively.

Conditions ii-a) (resp. ii-b)) means that, when Nu
x 6= ∅

(resp. Ns
x 6= ∅), the flow of (8) expands (resp. contracts) the

unstable (resp. stable) space more sharply than its tangent

space.

Lemma 1. The dynamics (7) is normally hyperbolic at T0.

Proof. Denote Q := TN × R
N
≥0. Moreover, denote ϑ :=

(θ, ρ) ∈ T0. Since r is constant on T0, the tangent space TϑT0
at a point ϑ ∈ T0 is spanned by

{

∂
∂θi

∣

∣

∣

ϑ
, i = 1, . . . , N

}

. Let

Ns
ϑ := span

{

∂

∂ri

∣

∣

∣

∣

ϑ

, i = 1, . . . , N

}

.

Fix coordinates in the tangent space in such a way that

(êi, 0N ) = ∂
∂θi

, i = 1, . . . , N , is a base of TϑT0, where

êij = 0 if j 6= i and êii = 1, and, similarly, (0N , ê
i) = ∂

∂ri
,

i = 1, . . . , N , is a base of Ns
ϑ. In these bases, for all ϑ ∈ T0

the tangent application of (7) at ϑ reads

DHϑ =

[

∂θ̇
∂θ

∂θ̇
∂r

∂ṙ
∂θ

∂ṙ
∂r

]
∣

∣

∣

∣

ϑ

=

[

0N×N 0N×N

0N×N diag{−2ρ2i }i=1,...,N

]

. (9)

It follows from (9) that, for all ϑ ∈ T0 the splitting

TϑQ = TϑT0 ⊕Ns
ϑ

is DHϑ-invariant, which verifies condition i) of Definition

1 with Nu
(θ,ρ) = ∅. In particular, in the bases (êi, 0N ) and

(0N , ê
i), we have

DH0
ϑ := DH(θ,ρ)

∣

∣

TϑT0

= 02N×2N (10a)

DHs
ϑ := DHϑ|Ns

ϑ

=

[

0N×N 0N×N

0N×N diag{−2ρ2i }i=1,...,N

]

. (10b)

We now endow Q with a suitable Riemannian metric.

To this aim note that since Dρ := diag{−2ρ2i }i=1,...,N is

Hurwitz, there exists a positive definite matrix P ∈ R
N×N >

0 such that the exponential application eDρ contracts the

norm |x|P :=
√
xTPx induced by P , that is |eDρx|P < |x|P



for all x ∈ R
N . Since Dρ does not depend on ϑ, so does P .

Let

P̃ :=

[

IN 0N×N

0N×N P

]

.

We endow Q with the constant Riemannian metric < ·, · >P̃
defined by

< v, u >P̃= vT P̃ u, v, u ∈ T(θ,r)Q.
In the base (ON , ê

i), i = 1, . . . , N , a generic vector v ∈ Ns
ϑ

is represented by (0N , v
r), vr ∈ R

N . Therefore, we have

sup
ϑ∈T0

sup
v∈Ns

ϑ

|eDHs
ϑv|P̃

|v|P̃
= sup

ϑ∈T0

sup
vr∈RN

|eDHs
ϑ(0N , v

r)|P̃
|(0, vr)|P̃

= sup
ϑ∈T0

sup
vr∈RN

|eDρvr|P
|vr|P

< 1.

Condition ii-b) of Definition 1 follows by noticing that, since

DH0
ϑ = 02N×2N ,

min







1, inf
ϑ∈T0

inf
v∈TϑT0

∣

∣

∣
eDH

0

ϑv
∣

∣

∣

P̃

|v|P̃







= 1.

We are now going to apply a classical result of Hirsch et. al

[16, Theorem 4.1] to show that, if κ, γ̃ are sufficiently small,

then (6) still has an attractive normally hyperbolic invariant

manifold in a neighborhood of T0.

Theorem 1. Given ρi > 0, i = 1, . . . , N , there exists

constants δh, Ch > 0 depending only ρi, i = 1, . . . , N , such

that, if

|(κ, γ̃)| < δh (11)

then there exists an attractive invariant manifold Tp ⊂ TN×
R
N
>0 normally hyperbolic for (6) and satisfying

|r − ρ| ≤ Ch|(κ, γ̃)|, ∀(θ, r) ∈ Tp. (12)

Theorem 1 states that, if the coupling and the feedback

strengths are smaller then a constant δh depending only on

the natural radius ρi, then the network dynamics (1) evolves

on an (attractive) normally hyperbolic invariant manifold

Tp. Moreover, the distance between Tp and T0 is less than

Ch|(κ, γ̃)|, where again Ch depends only on the natural

radius. We refer to condition (11) as the small coupling

condition.

Remark 1. Note that the constant δh, and thus the small

coupling condition, depends only on the oscillator natural

radius ρi. In particular, it is independent of the natural

frequencies ω.

If the small coupling condition is satisfied, then Theorem 1

has two important consequences:

1. On the attractive normally hyperbolic invariant torus

Tp, the oscillator radius variations around their natural

radius are bounded by |r(t) − ρ| ≤ Ch|(κ, γ̃)|, for all

t ≥ 0. In particular, they are small, provided that |(κ, γ̃)|
is small.

2. To the first order in |(κ, γ̃)| the phase dynamics does

not depend on the radius dynamics. Indeed from (12)

and (18) it follows that
∣

∣

∣

∣

∂f

∂r
(θ, r, κ, γ̃,Φ)(r − ρ)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂f

∂r
(θ, r, κ, γ̃,Φ)

∣

∣

∣

∣

|r − ρ|

≤ Cf |(κ, γ̃)|Ch|(κ, γ̃)|
= CfCh|(κ, γ̃)|2.

Hence, to the first order in |(κ, γ̃)|, i.e. to the first order

in the coupling and feedback strength, if the small coupling

condition (11) holds true, then (6) boils down to the phase

dynamics equation

θ̇i = ωi + f̄i(θ, κ, γ̃,Φ), (13)

where

f̄i(θ, κ, γ̃,Φ) := (14)

−
N
∑

j=1

κij sin(δij + ηi) +

N
∑

j=1

kij sin(θj − θi + δij + ηj)

+

N
∑

j=1

γij

[

sinϕj + cosϕj
2

sin(θj − θi + φij + ψj)

+
sinϕj − cosϕj

2
sin(θj + θi − φij + ψj)

]

,

with k := [kij ]ij=1,...,N :=
[

κijρj
ρi

]

and γ :=

[γij ]ij=1,...,N :=
[

γ̃ijρj
ρi

]

, and the radius dynamics can be

neglected, as it was done, for instance, in [18], [9].

Remark 2. We stress that, if (11) is satisfied, the error

between the nominal dynamics (6) and its phase dynamics

(13) is of the same order as |(κ, γ̃)|2.

Proof. Even though for κ = γ̃ = 0 it holds that f ≡
g ≡ 0, as soon as (κ, γ̃) 6= 0, f and g are unbounded,

due to singularities at ri = 0 and ri = ∞, i = 1, . . . , N .

However, the persistence of the normally hyperbolic invariant

torus solely relying on local arguments, we can construct a

locally defined auxiliary smooth dynamical system, which

is identical to (6) near T0. The auxiliary system possesses

a normally hyperbolic invariant manifold Tp near T0 if and

only if the same holds for the original dynamics (6).

STEP 1: Compactification.

The result of [16, Theorem 4.1] applies for dynamical

systems defined on compact manifolds. Thus, we construct

our auxiliary dynamics on a compact manifold containing

T0. To this end, we consider some smooth functions Gi :
R≥0 → [0, 1] such that (see [19, Page 54])

Gi(ri) =











0 if ri ∈
[

0, ρi
2

]

1 if ri ∈
[

3ρi
4 ,

5ρi
4

]

0 if ri ≥ 3ρi
2 .

(15)

By denoting

P :=

{

r ∈ R
N
>0 : ri ∈

[

ρi

2
,
3ρi
2

]

, i = 1, . . . , N

}

,



we let M be the compact submanifold

M := TN × P .

We define our auxiliary dynamics as a dynamical system on

the compact submanifold M as follows:

θ̇i = ωi + fi(θ, r, κ, γ̃,Φ), θ ∈ TN(16a)

ṙi = Gi(ri)
(

ri(ρ
2
i − r2i ) + gi(θ, r, κ, γ̃,Φ)

)

, r ∈ P .(16b)

Note that, by definition, the two dynamics (6) and (16)

coincide on

M := TN × P , (17)

where

P :=

{

r ∈ R
N
>0 : ri ∈

[

3ρi
4
,
5ρi
4

]

, i = 1, . . . , N

}

.

Hence, (6) has an attractive normally hyperbolic invariant

manifold Tp ⊂ M if and only if (16) does.

STEP 2: Invariance.

In order to apply [16, Theorem 4.1] to (16) with κ and γ̃ as

the perturbation parameters, we also have to show that the

compact manifold M is invariant with respect to the flow of

(16) independently of (κ, γ̃) ∈ R
N×2N . In this case, for all

perturbation parameters, the flow associated to (16) defines

a diffeomorphism of M, as required by [16, Theorem 4.1].

By construction of the functions Gi in (15), the border of

M, i.e.

∂M :=
(

TN ×
{ρ

2

})

∪
(

TN ×
{

3ρ

2

})

is made of fixed points of the radius dynamics (16b),

independently of the value of the parameters κ, γ̃,Φ. In other

words, for all (κ, γ̃,Φ) ∈ R
N×(4N+3), the border of M is

given by the union of the two invariant torus TN ×
{

ρ
2

}

and TN ×
{

3ρ
2

}

. This in turn ensures that M is invariant

for (16). To see this, suppose M is not invariant. Then,

by continuity of the solutions of (16) there must exists

some initial conditions (θ0, r0) ∈ M, an instant t̄ ∈ R,

some ǫ > 0, and a trajectory
(

θ(·, (θ0, r0)), r(·, (θ0, r0))
)

of (16), such that
(

θ(t̄, (θ0, r0)), r(t̄, (θ0, r0))
)

∈ ∂M and
(

θ(t̄ + ǫ, (θ0, r0)), r(t̄ + ǫ, (θ0, r0))
)

6∈ M, which violates

the invariance of ∂M.

STEP 3: The nominal invariant manifold and construction

of the perturbed one.

For κ = γ̃ = 0, the N-torus T0 = TN × {ρ} is attractive

normally hyperbolic invariant for (16), since T0 ⊂ M and

the same holds for (6).

It remains to show that, if |(κ, γ̃)| is small, then the C1-

norm1 of the functions

M :−→ R
N

(θ, r) 7−→ f
∣

∣

M
(θ, r, κ, γ̃,Φ)

1The C1-norm of a C1 bounded function with bounded
derivatives F : M → RN is defined as ‖̄F ‖̄1 :=
max{sup

x∈M
|F (x)|, sup

x∈M
|∂F/∂x(x)|}, where |F (x)| (resp.

|∂F/∂x(x)|) is the Euclidean (resp. Frobenius) norm of F (x) (resp.
∂F/∂x(x)).

and

M :−→ R
N

(θ, r) 7−→ G
∣

∣

M
(r)g

∣

∣

M
(θ, r, κ, γ̃,Φ)

where G := [Gi]i=1,...,N , is small in the C1-norm as well.

To this aim, note that f and its derivative ∂f
∂(θ,r) are linear

in the entries (κ, γ̃)ij , i ∈ {1, . . . , N}, j ∈ {1, . . . , 2N} of

the matrix (κ, γ̃). Furthermore, the coefficients multiplying

(κ, γ̃)ij , are smooth functions of (θ, r,Φ) and are uniformly

bounded on M × R
N×(2N+3). Similarly, for the product

Gg and its derivative
∂(Gg)
∂(θ,r) . It thus follows that there exists

Cf , Cg > 0, Cf , Cg independent of κ, γ̃, ω, and Φ, such

that

‖̄f |M(·, ·, κ, γ̃,Φ)‖̄1 ≤ Cf |(κ, γ̃)| (18a)

‖̄G|M(·)g|M(·, ·, κ, γ̃,Φ)|M‖̄1 ≤ Cg|(κ, γ̃)|, (18b)

that is both f and g are |(κ, γ̃)|-small in the C1-norm. Note

that the constants Cf , Cg solely depend on the natural radius

ρi.

We can finally apply [16, Theorem 4.1] to conclude the

existence of δ′h > 0, independent of κ, γ̃, ω, and Φ, such

that, if

|(κ, γ̃)| ≤ δ′h, (19)

then (16) still has an attractive normally hyperbolic invariant

N-torus Tp ⊂ M, which is |(κ, γ̃)|-near in the C1-norm to

T0. In particular, there exists Ch > 0 such that, if |(κ, γ̃)| <
δ′h, then

|r − ρ| ≤ Ch|(κ, γ̃)|, ∀(θ, r) ∈ Tp, (20)

where again Ch is independent of κ, γ̃, ω, and Φ. The fact

that δ′h and Ch depends only on the natural radius ρi, comes

from the fact that the linearization (9) of the unperturbed

dynamics (7) solely depends on ρi, i = 1, . . . , N .

To prove the theorem, it remains to pick |(κ, γ̃)| suffi-

ciently small that Tp ⊂ (M \ ∂M). Indeed, the compact

manifold M, defined in (17), is the region where the com-

pactified (16) and the original (6) dynamics coincide. Since

normal hyperbolicity is a local concept, (16) is normally

hyperbolic at a manifold Tp ⊂ (M \ ∂M) if and only if

so it does (6). To this aim, by picking

δh :=
mini=1,...,N ρi

4Ch
,

and

|(κ, γ̃)| < δh,

it follows from (19), (20), and the definition (17) of M, that

for all (θ, r) ∈ Tp, and all i = 1, . . . , N

|ri − ρi| ≤ |r − ρ| ≤ Ch|(κ, γ̃)| < Ch
mini=1,...,N ρi

4Ch
≤ ρi

4
,

which ensures that Tp ⊂ M.



IV. EXISTENCE OF PHASE-LOCKED SOLUTIONS IN THE

PHASE DYNAMICS

Based on the analysis in Section III we formulate the

following assumption, which, in view of Theorem 1 and

Remark 2, is verified to the first order in the coupling

and feedback strengths, provided that the small coupling

condition (11) is satisfied (see Remarks 1 and 2).

Assumption 1. For all i = 1, . . . , N , the solution of (1)

satisfies |zi(t)| = ρi, for all t ≥ 0.

This assumption is commonly made in synchronization

studies [8], [7], [6], [20], [9]. The analysis in Section III

above provides a rigorous justification to it.

In the remainder of this section, we rely on Assumption 1

and study the existence of phase-locked solutions in (13)-

(14), where phase-locked solutions are defined as follows.

Definition 2. A solution {θ∗i }i=1,...,N of (13) or (6) is said

to be phase-locked if it satisfies

θ̇∗j (t)− θ̇∗i (t) = 0, ∀ i, j = 1, . . . , N, ∀t ≥ 0. (21)

A phase-locked solution is oscillating if, in addition, θ̇∗i (t) 6=
0, for almost all t ≥ 0 and all i = 1, . . . , N .

Phase-locking is trivially equivalent to the existence of a

matrix ∆ := [∆ij ]i,j=1,...,N , such that

θ∗j (t)− θ∗i (t) = ∆ij , ∀ i, j = 1, . . . , N, ∀t ≥ 0, (22)

or to the existence of a continuous function Ω : R≥0 → R

such that, for each i = 1, . . . , N ,

θ∗i (t) =

∫ t

0

Ω(s)ds+ θ∗i (0), ∀t ≥ 0, (23)

Continuity of Ω follows from the continuity of the solution

of (13) (see [21, Theorem 3.1]).

The main result of [9] stated that, generically, the phase

dynamics (13)-(14) admits no oscillating phase-locked solu-

tions for the special case when δ = 0, η = 0, ϕ = 0 and

ψ = 0. The rest of this section consists in extending that

result to the more general case (13)-(14).

A. The fixed point equation

We start by identifying the phase-locked solutions or,

equivalently, the fixed points of the incremental dynamics

of (13), i.e. θ̇i− θ̇j = 0, for all i, j = 1, . . . , N . Given some

initial conditions θ∗(0), this fixed points equation reads

ωi −
N
∑

h=1

κih sin(δih + ηi) +

N
∑

h=1

kih sin(∆ih + δih + ηh)

+

N
∑

h=1

γih
sinϕh + cosϕh

2
sin(∆ih + φih + ψh)

−ωj +
N
∑

h=1

κjh sin(δjh+ηj)−
N
∑

h=1

kjh sin(∆jh+δjh+ηh)

−
N
∑

h=1

γjh
sinϕh + cosϕh

2
sin(∆jh + φjh + ψh)

+

N
∑

h=1

sinϕh−cosϕh
2

γih sin(2ΛΩ(t)+∆ih+2θ
∗
i (0)−φih+ψh)

−
N
∑

h=1

sinϕh−cosϕh
2

γjh sin(2ΛΩ(t)+∆jh+2θ
∗
j (0)−φjh+ψh)

= 0. (24)

where the phase differences ∆ ∈ R
N×N and the common

frequency of oscillation Ω : R → R are defined in (22) and

(23) respectively.

Let us introduce some notation. The fixed point equation

(24) must be solved in ∆ and Ω. It is parametrized, apart

from the natural frequencies ω, by the elements of the matrix

Υ ∈ R
N×(4N+3), which is defined as

Υ := (κ, γ̃,Φ), (25)

where Φ is defined in (3). Let us denote the first four (time-

independent) lines of (24) as the function ΦTIij : R
N ×

R
N×(4N+3) × R

N×N → R, that is

ΦTIij (ω,Υ,∆) := (26)

ωi −
N
∑

h=1

κih sin(δih + ηi) +

N
∑

h=1

kih sin(∆ih + δih + ηh)

+

N
∑

h=1

γih
sinϕh + cosϕh

2
sin(∆ih + φih + ψh)

−ωj +
N
∑

h=1

κjh sin(δjh + ηj)−
N
∑

h=1

kjh sin(∆jh + δjh + ηh)

−
N
∑

h=1

γjh
sinϕh + cosϕh

2
sin(∆jh + φjh + ψh).

Similarly we denote the last two (time-dependent) lines of

(24) as the function ΦTDij : R×R
N×(4N+3)×R

N×N×R
N →

R, that is

ΦTDij (t,Υ,∆, θ∗(0)) := (27)

+

N
∑

h=1

sinϕh−cosϕh
2

γih sin(2ΛΩ(t)+∆ih+2θ
∗
i (0)−φih+ψh)

−
N
∑

h=1

sinϕh−cosϕh
2

γjh sin(2ΛΩ(t)+∆jh+2θ
∗
j (0)−φjh+ψh).



The following lemma states that the problem of finding an

oscillating phase-locked solution to (13)-(14) can be reduced

to solving a set of nonlinear algebraic equations in terms

of the phase differences ∆ and the collective frequency of

oscillation Ω.

Lemma 2. For all initial conditions θ∗(0) ∈ TN , all natural

frequencies ω ∈ R
N , all parameters Υ ∈ R

N×(4N+3),

if system (13) admits an oscillating phase-locked solution

starting in θ∗(0) with phase differences ∆ and collective

frequency of oscillation Ω, then, for all 1 ≤ i < j ≤ N , the

functions defined in (26) and (27) satisfy

ΦTIij (ω,Υ,∆) = 0, (28a)

ΦTDij (t,Υ,∆, θ∗(0)) = 0. (28b)

Proof. The proof follows along the same lines as those of

[9, Lemma 1]. Firstly, note that, by definition, the fixed point

equation (24) can be rewritten as

ΦTIij (ω,Υ,∆) + ΦTDij (t,Υ,∆, θ∗(0)) = 0.

Since ΦTIij (ω,Υ,∆) is constant, this is equivalent to writing

ΦTIij (ω,Υ,∆) = bij ,

ΦTDij (t,Υ,∆, θ∗(0)) = −bij , (29)

for some constant bij ∈ R. We claim that, if the phase-

locked solution is oscillating, then necessarily bij = 0. To

see this, differentiate (29) with respect to time. We obtain,

for all t ≥ 0,
{

N
∑

h=1

γih

[

cosψh cos(2ΛΩ(t) + ∆ih − φi + 2θ∗i (0))

− sinψh sin(2ΛΩ(t) + ∆ih − φi + 2θ∗i (0))
]

−
N
∑

h=1

γjh

[

cosψh cos(2ΛΩ(t) + ∆jh − φj + 2θ∗j (0))

− sinψh sin(2ΛΩ(t) + ∆jh − φj + 2θ∗j (0))
]

}

×2Ω(t) = 0. (30)

Since the solution is oscillating, Ω is a non-identically zero

continuous function, and, thus, there exists an open interval

(t, t̄), such that Ω(t) 6= 0, for all t ∈ (t, t̄). Hence, (30)

implies that

N
∑

h=1

γih

[

cosψh cos(2ΛΩ(t) + ∆ih − φi + 2θ∗i (0))

− sinψh sin(2ΛΩ(t) + ∆ih − φi + 2θ∗i (0))
]

−
N
∑

h=1

γjh

[

cosψh cos(2ΛΩ(t) + ∆jh − φj + 2θ∗j (0))

− sinψh sin(2ΛΩ(t)+∆jh−φj +2θ∗j (0))
]

= 0,

(31)

for all t ∈ (t, t̄). By differentiating (31) with respect to time

and considering once again that Ω(t) 6= 0 for all t ∈ (t, t̄),
one gets

ΦTDij (t,Υ,∆, θ∗(0)) = 0

for all t ∈ (t, t̄), that is, at the light of (29), bij = 0, which

concludes the proof.

B. Invertibility of the time-independent part of the fixed point

equation

In the following lemma we show that, for a generic choice

of the parameters, the time-independent part (28a) of the

fixed point equation (24) can be inverted to give the phase

differences ∆ in term of the natural frequencies ω and the

parameter matrix Υ.

Lemma 3. There exists a set N ⊂ R
N × R

N×(4N+3),

and a set N0 ⊂ N satifying µ(N0) = 0, such that (28a)

with natural frequencies ω∗ ∈ R
N and parameters Υ∗ ∈

R
N×(4N+3) admits a solution ∆∗ ∈ R

N×N if and only if

(ω∗,Υ∗) ∈ N . Moreover, for all (ω∗,Υ∗) ∈ N \ N0, there

exists a neighborhood U of (ω∗,Υ∗), a neighborhood W of

∆∗, and an analytic function f : U → W , such that,

for all (ω,Υ) ∈ U ,
(

ω, Υ, ∆ := f(ω,Υ)
)

is the unique

solution of (28a) in U ×W .

Remark 3. In this generalized version, we prove the analyt-

icity of f , instead of simply smoothness as for [9, Lemma

2], since this permits to largely simplify the proof of the

existence Theorem 2 below.

Proof. (SKETCH) The first part of the proof follows exactly

the same steps as [9, Lemma 2], with the matrix Υ at the

place of the matrix Γ, and with the two function F and F̂

redefined as follows. By letting yi := ∆iN , i = 1, . . . , N−1,

we let

Fi(ω,Υ, y) := ΦTIiN (ω,Υ,∆(y)),

and

F̂i(ω̂i,Υ, y) := ΦTIiN (0,Υ,∆(y)) + ω̂i,

where ∆nN (y) := yn, ∆nm(y) = ym − yn, and ω̂m :=
ωm − ωN , n = 1, . . . , N , m = 1, . . . , N − 1. The end of

the proof is slightly different since, in order to prove the

analyticity of f , instead of just smoothness as in [9, Lemma

2], one has to invoke the fact that F is analytic and then apply

the analytic implicit function theorem [22, Theorem 2.3.5].

For more details, we invite the reader to retrace the proof of

[9, Lemma 2], with the above modifications in mind.

C. Non-existence of oscillating phase-locked solutions

In the following theorem, we show that, for a generic

choice of the parameters, no oscillating phase-locked solution

exists in the phase dynamics (13).

Theorem 2. For all initial conditions θ∗(0) ∈ TN , and for

almost all ω ∈ R
N and Υ ∈ R

N×(4N+3), as defined in

(25), (13)-(14) admits no oscillating phase-locked solution

starting in θ∗(0).



Proof. Observe that, if (ω,Υ) 6∈ N , then, by Lemma 3,

the time-independent part of the fixed point equation (28a)

admits no solutions and, thus, by Lemma 2, the phase

dynamics (13) admits no oscillating phase-locked solution.

Therefore, let us assume that (ω,Υ) ∈ N . We claim that

there exists M0 ⊂ N , with µ(M0) = 0, such that, given

initial conditions θ∗(0), if there exists an oscillating phase-

locked solution of (13) starting in θ∗(0), then (ω,Υ) ∈ N0∪
M0, where N0 is defined in Lemma 3 in Section IV-B. If

our claim holds true, noticing that µ(M0 ∪ N0) = 0, then

the theorem is proved.

We want to construct M0 as the zeros of a suitable

analytic function, thus ensuring that it has zero Lebesgue

measure [22, Page 83].

Given (ω,Υ) ∈ N \ N0, it follows from Lemma 3 that

there exists a unique ∆(ω,Υ) such that (ω, Υ, ∆(ω,Υ))
is solution to (28a). That is the function

N \N0 :−→ R
N×N

(ω,Υ) 7−→ ∆(ω,Υ)

is well defined. It is also analytic, since, again by Lemma 3,

for all (ω,Υ) ∈ N \N0 it is analytic in a neighborhood U of

(ω,Υ). Given a pair of indexes i 6= j, consider the function

Φ̃TDij defined as

Φ̃TDij :

{

N \N0 → R

(ω,Υ) 7→ ΦTDij (0,Υ,∆(ω,Υ), θ∗(0))
(32)

where ΦTDij is defined in (27). The function Φ̃TDij is analytic

on N \ N0, since it is the composition of two analytic

functions [22, Proposition 1.4.2]. We define M0 as the zero

set of Φ̃TDij , that is

M0 := {(ω,Υ) ∈ N \ N0 : Φ̃TDij (ω,Υ) = 0}. (33)

As anticipated above, since Φ̃TDij is analytic, µ(M0) = 0. By

construction, if (ω,Υ) ∈ (N \N0)\M0, then Φ̃TDij (ω,Υ) 6=
0, that is, by the definition of Φ̃TDij in (32), the time-

dependent part of the fixed point equation (28b) admits no

solutions. By Lemma 2, this implies that, if there exists an

oscillating phase-locked solution starting from θ∗(0), then

necessarily

(ω,Υ) ∈ N \
[

(N \N0) \M0

]

= N \
[

N \ (N0 ∪M0)
]

= N0 ∪M0,

which proves the claim.

V. EXISTENCE OF PHASE-LOCKED SOLUTIONS IN THE

ORIGINAL DYNAMICS

We can readily apply Theorem 2 and the perturbation

analysis of Section III to study the existence of oscillating

phase-locked solutions in the full dynamics (1).

Corollary 1. For all θ(0) ∈ TN , for almost all ω◦ ∈
[−1, 1]N , almost all κ◦, γ̃◦ ∈ [−1, 1]N×N \{0}, and almost

all Φ ∈ R
N×(2N+3), such that

max
i=1,...,N

|ω◦
i | −

N
∑

j=1

(

|κ◦ij |+
|κ◦ij |ρj
ρi

+ 2
|γ̃◦ij |ρj
ρi

)

> 0 (34)

there exists ε̄ > 0 such that, for all ε ∈ (0, ε̄], system (6)

with natural frequencies ω = ε ω◦, coupling matrix κ = ε κ◦,

and feedback gain γ̃ = ε γ̃◦, is normally hyperbolic at an

invariant manifold Tp ⊂ TN ×R
N
>0 such that no oscillating

phase-locked solution exists starting in (θ(0), r(0)) ∈ Tp.

Corollary 1 states that, for almost all natural frequency

dispersion (i.e. ω◦) and coupling and feedback topologies

(i.e. κ◦, γ̃◦), the full dynamics (1) admits no oscillating

phase-locked solutions on the attractive normally hyperbolic

invariant manifold Tp, provided that the absolute magnitude

of the natural frequencies and the coupling and feedback

strengths are small (i.e. ε ≤ ε̄) and that the reduced phase

dynamics with the same parameters is oscillating, i.e. θ̇ 6≡ 0,

as implied by (34).

Proof. We need some notation to distinguish the solutions

of the full (6) and reduced (14) phase dynamics. Given

(θ(0), r(0)) ∈ TN × R
N
>0, we thus let θ0(·, θ(0);ω, κ, γ̃,Φ)

denote the solution of (14) with parameters (ω, κ, γ̃,Φ),
whereas we let θ(·, (θ(0), r(0));ω, κ, γ̃,Φ) denote the solu-

tion of the full dynamics (6) with the same set of parameters.

It follows from Theorem 2 that for all θ(0) ∈ TN , and

for almost all ω◦ ∈ [−1, 1]N , (κ◦, γ̃◦) ∈ R
N×2N \ {0}

and Φ ∈ R
N×(2N+3), the reduced phase dynamics (14) with

natural frequencies ω = ω◦, coupling and feedback gain κ =
κ◦, γ̃ = γ̃◦, and phases Φ admits no oscillating phase-locked

solutions. Since, from (34) and (13)-(14), θ0 is oscillating,

there thus exist i, j ∈ 1, . . . , N , i 6= j, and C1 > 0 such that

sup
t∈R

|θ̇0j (t, θ(0);ω◦, κ◦, γ̃◦,Φ)−θ̇0i (t, θ(0);ω◦, κ◦, γ̃◦,Φ)| = C1.

(35)

Since |θ̇0j (t) − θ̇0i (t)| is linear in ω, κ, and γ̃, (35) implies

that, given ε > 0

sup
t∈R

∣

∣

∣
θ̇0j (t, θ(0); ε ω

◦, ε κ◦, ε γ̃◦,Φ) (36)

−θ̇0i (t, θ(0); ε ω◦, ε κ◦, ε γ̃◦,Φ)
∣

∣

∣
= εC1.

The perturbation analysis of Section III, summarized in

Remark 2, implies that the difference between the full and

reduced phase dynamics is of the same order as |(κ, γ̃)|2,

provided that the small coupling condition (11) is satisfied.

That is, if ε|(κ◦, γ̃◦)| < δh or, equivalently, considering

(κ◦, γ̃◦) 6= 0,

ε <
δh

|(κ◦, γ̃◦)| , (37)

then there exists a manifold Tp ⊂ TN × R
N
>0, normally

hyperbolic and invariant for (6), and a constant C2 > 0 such

that, for all (θ(0), r(0)) ∈ Tp and all l = 1, . . . , N ,

sup
t∈R

∣

∣

∣
θ̇l(t, (θ(0), r(0)); ε ω

◦, ε κ◦, ε γ̃◦,Φ) (38)



−θ̇0l (t, θ(0); ε ω◦, ε κ◦, ε γ̃◦,Φ)
∣

∣

∣
≤ C2 ε

2 |(κ◦, γ̃◦)|2.

Let us denote, for all l = 1, . . . , N ,

θ̇l(t, ε) := θ̇l(t, (θ(0), r(0)); ε ω
◦, ε κ◦, ε γ̃◦,Φ)

and similarly for θ0. By using (36) and (38), it follows that,

if (37) is satisfied, then

sup
t∈R

∣

∣

∣
θ̇i(t, ε)− θ̇j(t, ε)

∣

∣

∣

= sup
t∈R

∣

∣

∣
θ̇i(t, ε)− θ̇0i (t, ε)− θ̇j(t, ε) + θ̇0j (t, ε)

+θ̇0i (t, ε)− θ̇0j (t, ε)
∣

∣

∣

≥ sup
t∈R

∣

∣

∣
θ̇0i (t, ε)− θ̇0j (t, ε)

∣

∣

∣
− sup

t∈R

∣

∣

∣
θ̇i(t, ε)− θ̇0i (t, ε)

∣

∣

∣

− sup
t∈R

∣

∣

∣
θ̇i(t, ε)− θ̇0i (t, ε)

∣

∣

∣

≥ C1 ε− 2C2 ε
2 |(κ◦, γ̃◦)|2

Thus, if

ε < min

{

δh

|(κ◦, γ̃◦)| ,
C1

2C2|(κ◦, γ̃◦)|2
}

=: ε̄

then supt∈R
|θ̇i(t, ε)− θ̇j(t, ε)| > 0, that is (1) admits no os-

cillating phase-locked solutions starting in (θ(0), r(0)).
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