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Interval observers for continuous-time linear systems

with discrete-time outputs

Frédéric Mazenc, Michel Kieffer, and Eric Walter

Abstract— We consider continuous-time linear systems with
additive disturbances and discrete-time measurements. First, we
construct an observer, which converges to the state trajectory of
the linear system when the maximum time interval between two
consecutive measurements is sufficiently small and there are no
disturbances. Second, we construct interval observers allowing
to determine, for any solution, a set that is guaranteed to contain
the actual state of the system when bounded disturbances are
present.

I. INTRODUCTION

Traditional state estimators, such as the Luenberger ob-

server [21] or the Kalman filter [9], compute point estimates

of the state from input-output data, possibly supplemented

by an estimate of the dispersion of the possible values of

the state around this point estimate. By contrast, guaranteed

state estimators [5], [6], [18], also known as set-membership

estimators [4], [26], compute sets guaranteed to contain the

actual value of the state if some hypotheses on the state

perturbation and measurement noise are satisfied.

Guaranteed state estimation can be traced back to the

seminal work of F.C. Schweppe [32], [33]. His idea was

recursively to compute ellipsoids guaranteed to contain

the actual state. Of course, other types of containers than

ellipsoids could and have been used, such as boxes [25],

parallelotopes [7], zonotopes [1] or other limited-complexity

polytopes. Matlab toolboxes implementing ellipsoidal or

polytopic calculus are readily available [19], [36].

We consider in this paper a specific type of guaranteed

state estimators for continuous-time linear models known as

interval observers. Interval observers were introduced in [12]

and extended and applied in many studies, see, for instance,

[3], [22]–[24], [27], [29]–[31]. Typically, they bound the

actual state between the solutions of two deterministic and

possibly coupled dynamical systems, which form a framer.

It is also required that the upper and lower bounds asymp-

totically converge to one another in the absence of state

perturbation. The constructions of interval observers rely

more or less directly on the notion of cooperative system

[34], but they are not limited to this type of system, as

explained in [22] and [23].
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Until recently, interval observers were designed for sys-

tems without output or with continuously measured outputs.

This was a severe limitation as most, if not all, measurements

are collected at discrete instants of time. In the pioneering

contributions [10], [11], interval observers for nonlinear

continuous-time systems using discrete-time measurements

were introduced. The ideas of these contributions are: (i) to

construct classical framers for the system under study, (ii) to

reinitialize the framer at each measurement time, taking into

account the current estimate and measured outputs.

The aim of the present work is to propose a new ap-

proach for building interval observers for continuous-time

linear systems with discrete-time outputs. Our result differs

significantly from those presented in [10], [11] because the

interval observers of [10], [11] have discontinuous solutions

whereas those proposed here have continuous solutions.

The key ideas of our approach can be decomposed into

three steps. First, under a classical detectability condition,

we construct an observer that would be exponentially stable

if the outputs were available at all instants of time and

no disturbances were acting. However, with discrete-time

measurements and additive state disturbances, instability may

occur (even if the disturbances are bounded, as we shall

assume) in the sense that some trajectories may go to infinity

when the time intervals between two measurements are larger

than some threshold. We give conditions ensuring that this

phenomenon does not occur. Second, we determine the error

equation and transform the time-invariant part of it into a co-

operative system through the possibly time-varying change of

coordinates introduced in [23]. Third, using the observer and

modified error equation, we construct an interval observer

for the original system (with additive disturbances), which

is discontinuous with respect to time. It admits continuous

solutions and produces upper and lower bounds for the

solutions which, in the absence of disturbances, converge

exponentially to one another. It is worth mentioning that

the observer on which we base our interval observer for

systems with discrete-time measurements differs from those

presented in [2], [8] and [13], which rely on an impulsive

correction of the estimated solution that is carried out when

a new measurement becomes available and thereby yield

discontinuous solutions. Finally, we wish to point out that,

in general, the classical interval observers that are valid for

systems with continuous-time outputs do not even frame the

solutions when the outputs are only available at discrete

time instants. We will show that through a counter-example

inspired from that in [24].

The paper is organized as follows. Section II is devoted



to definitions, notation and a motivating counter-example.

The system under study is introduced in Section III, where

observer for it is constructed. A family of interval observers

is proposed and studied in Section IV. Concluding remarks

are drawn in Section V.

II. NOTATION, DEFINITIONS AND MOTIVATING

COUNTER-EXAMPLE

A. Basic notation and definitions

The Euclidean norm of vectors of any dimension and the

induced norm of matrices of any dimensions are denoted

|| · ||. For any integer k, the identity matrix of any dimension

k is denoted by I and any k × n matrix, whose entries

are all 0 is denoted by 0. Inequalities must be understood

componentwise (partial order of R
r), so for instance Wa =

(wa1, ...,war)
⊤ ∈ R

r and Wb = (wb1, ...,wbr)
⊤ ∈ R

r are such

that Wa ≤Wb if and only if, for all i ∈ {1, . . . ,r}, wai ≤ wbi.

max{A,B} for two matrices A = (ai j) and B = (bi j) of

the same dimensions is the matrix M such that each entry

is mi j = max{ai j,bi j}. A matrix A = (ai j) ∈ R
n×p is non-

negative (resp. positive) if ai j ≥ 0, i = 1, ...,n, j = 1, . . . , p,

(resp. ai j > 0, i = 1, ...,n, j = 1, ..., p). In this case, we will

write A ≥ 0 (resp. A > 0). A < 0 is used to express the fact

that A ∈ R
n×n is a symmetric matrix such that, for all vector

V ∈ R
n, V⊤AV ≥ 0. A real square matrix is cooperative (or

Metzler) if all its off-diagonal entries are nonnegative.

For a continuous function ϕ : [−τ,+∞)→R
k, for all t ≥ 0,

the function ϕt is defined by ϕt(θ) = ϕ(t + θ) for all θ ∈
[−τ,0].

The argument of the functions will be omitted or simplified

when the context is such that no confusion can arise.

B. Interval observer: definition

For the sake of generality, we introduce a definition

of interval observers for perturbed time-varying nonlinear

systems with outputs containing noisy measurements of the

state taken at discrete time instants. It differs from the one

used in [23].

Definition 1: Consider a continuous-time dynamical sys-

tem
{

ẋ(t) = F (t,x(t),u(t),w(t)) ,
y(t) = H (x(ti),w(t)), when t ∈ [ti, ti+1),

(1)

where x∈R
n is the state, w∈R

ℓ is the state perturbation, y∈
R

p is the output, and u ∈ R
q is the input. The measurement

times ti form an increasing sequence with t0 = 0 and are

such that there are two constants ε > 0, τ ≥ ε such that

ti+1−ti ∈ [ε,τ] for all integers i∈N. F and H are functions

of class C1 with respect to x, u, w and F is piecewise-

continuous with respect to t. The state perturbation w is

piecewise-continuous and such that there exist known bounds

w(t) = (w−(t),w+(t)) ∈ R
2ℓ, continuous and such that, for

all t ≥ 0,

w−(t) ≤ w(t) ≤ w+(t). (2)

Then, the continuous-time dynamical system

ż(t) = A (t,z(t),y(t),u(t),wt) , (3)

where z ∈ R
r, where the function A is locally Lipschitz

with respect to z, y, u and wt
1 on any bounded set of

R × R
r × R

p × R
q ×C0([−τ,0]) and piecewise-continuous

with respect to t, associated with the initial condition z0 =
B(s0,x

+
0 ,x−0 ) ∈ R

r and bounds for the solution x: x+ =
C +(t,z), x− = C−(t,z), with C +, C−, B Lipschitz contin-

uous of appropriate dimension, is called an interval observer

for (1) if

(i) for any vectors x0, x−0 and x+
0 in R

n satisfying x−0 ≤
x0 ≤ x+

0 and any u(·), w(·), w(·) bounded on any interval

[0, t), t ≥ 0 such that (2) is satisfied, the solutions of (1), (3)

with x0, z0 = B(s0,x0
+,x0

−) as initial conditions at t = s0,

denoted respectively x(t) and z(t), are defined for all t ≥ s0

and satisfy, for all t ≥ s0, the inequalities x−(t) ≤ x(t) ≤
x+(t).

(ii) for any vectors x−0 and x+
0 in R

n satisfying x−0 ≤ x+
0 ,

the solution z(t) of the system (3), with w(·) identically equal

to zero and with z0 = B(s0,x0
+,x0

−) as initial condition at

t = s0, is such that lim
t→+∞

||x+(t)− x−(t)|| = 0.

C. Counter example

In this section, we show, through a simple example, that

classical continuous-time interval observers are not robust

relative to sampling of their outputs, no matter how small the

largest sampling interval is. This motivates the construction

of interval observers for systems with sampled outputs to be

presented in the subsequent sections.

Observe first that, for the one-dimensional system

ẋ(t) = x(t) (4)

with the output y(t) = x(t), the system

{

ż+(t) = −z+(t)+2y(t),
ż−(t) = −z−(t)+2y(t),

(5)

associated with the bounds x+ = z+, x− = z− and the initial

conditions z+
0 = x+

0 , z−0 = x−0 , is an interval observer [12].

Now, if, for all t ∈ [ti, ti+1), we replace y(t) in (5) by y(ti),
where ti = iτ for all i ∈ N with τ any positive real number,

we obtain, for all t ∈ [ti, ti+1),
{

ż+(t) = −z+(t)+2y(ti),
ż−(t) = −z−(t)+2y(ti).

(6)

This system with the bounds x+ = z+, x− = z− and the initial

conditions z+
0 = x+

0 , z−0 = x−0 is not an interval observer for

(4). Let us prove this. Let z+ = z+ − x. We have, for all

t ∈ [ti, ti+1),

ż
+
(t) = −z+(t)+2x(ti)(1− et−ti) . (7)

By considering the initial condition x(s0) = 1, z+(s0) = 1,

s0 = 0 and integrating (7) over the interval [t0, t1) = [0,τ), we

obtain that z+(t) = 2− e−t − et , for all t ∈ [0,τ). It follows

that z+(t) < 0 for all t ∈ (0,τ). This allows us to conclude.

1Note that wt in (3) should not be confused with w(t) (see Section II-A
for the meaning of the notation wt ).



III. OBSERVERS FOR SYSTEMS WITH DISCRETE-TIME

MEASUREMENTS

We now focus on the system
{

ẋ(t) = Ax(t)+Bu(t)+δ1(t),
y(t) = Cx(ti)+δ2(t), when t ∈ [ti, ti+1),

(8)

where the matrices A ∈ R
n×n, B ∈ R

n×q, and C ∈ R
p×n

are constant, δ1 and δ2 are piecewise-continuous functions

(which typically represent state perturbations and measure-

ment noise) and ti is an increasing sequence with t0 = 0 and

such that there exist two constants τ ≥ ε > 0 for which

0 < ε ≤ ti+1 − ti ≤ τ, for all i ∈ N. (9)

In this section, we present an observer for continuous-time

linear systems described by (8). This result will later be used

to construct interval observers for the system (8). However, it

is of interest for its own sake. To the best of our knowledge,

it is new, in spite of its simplicity. Note that typically

the disturbance δ2(t) is constant over each interval [ti, ti+1)
since y(t) mostly represents discrete-time measurements.

This fundamental case is covered by Theorems 1-2 below

since δ2 is assumed piecewise-continuous.

Two assumptions are needed.

Assumption 1: There exists a constant matrix K ∈ R
n×p

such that the matrix

H = A+KC (10)

is Hurwitz. Moreover, L = KC 6= 0.

Assumption 1 ensures that there is a symmetric and positive

definite matrix S ∈ R
n×n such that the matrix inequality

H⊤S +SH 4 −I (11)

is satisfied.

Assumption 2: There exists a real number a∗ ∈ [||A||,+∞),
a∗ > 0 such that the constant τ introduced in (9) satisfies

τ ∈
(

0,
1

a∗
ln

(

1+
a∗

2||L||

)]

, (12)

and

τ ∈
(

0,
1

a∗
ln

(

1

2
+

1

2

√

1+
a∗

2||SL||(2||L||+a∗)

)]

, (13)

where L is the matrix in Assumption 1 and S is a matrix

satisfying (11).

We are ready to prove the following result:

Theorem 1: Assume that the system (8) satisfies Assump-

tions 1 and 2. Then the system defined by

˙̂x(t) = Ax̂(t)+Bu(t)+K[Cx̂(ti)− y(t)] (14)

when t ∈ [ti, ti+1) is an observer for the system (8). Moreover,

the error variable x̃ = x− x̂, satisfies for all t ∈ [ti, ti+1) the

following error equation, which is input-to-state stable (see

[35]) with respect to (δ1,δ2),

˙̃x(t) = Hx̃(t)+L
[

M (t, ti)
−1 − I

]

x̃(t)+δ4(t, ti), (15)

where

M (t,s) = eA(t−s) +

(

∫ t

s
eA(t−ℓ)dℓ

)

L (16)

and

δ4(t,s) = δ3(t)−LM (t,s)−1

∫ t

s
eA(t−ℓ)δ3(ℓ)dℓ, (17)

with

δ3(t) = δ1(t)+Kδ2(t). (18)

Discussion of Theorem 1.

• Assumption 1 is a detectability condition, which ensures

that an observer for the system ẋ(t) = Ax(t) with the output

Cx(t) can be constructed.

• When A 6= 0, the constant a∗ can be chosen equal to ||A||.
Moreover, since L 6= 0 and S is invertible, it follows that

SL 6= 0. Therefore the constants in Assumption 2 are well-

defined and positive.

• In Assumption 1, we have assumed that L 6= 0. This

simplifies the statements and proofs of our results, but is

by no means necessary.

• The term Bu in (8) plays no direct role in the context

of the construction of an observer of the type (14) for the

system (8). However, its presence shows that our results

apply in the context of systems whose inputs are used to

give them desirable properties.

Proof. Since δ1 and δ2 are piecewise-continuous functions

of t, the system (8)-(14) is forward-complete (see [20] for

the definition of forward-complete systems). Next, we write

the error equation. We obtain, for all t ∈ [ti, ti+1),

˙̃x(t) = Ax(t)−Ax̂(t)−K[Cx̂(ti)− y(t)]+δ1(t). (19)

Since L = KC, (19) can be rewritten, for all t ∈ [ti, ti+1), as

˙̃x(t) = Ax̃(t)+Lx̃(ti)+δ3(t), (20)

where δ3 is the function defined in (18). By multiplying both

sides of (20) by e−At and integrating, one can prove that, for

all t ∈ [ti, ti+1),

M (t, ti)x̃(ti) = x̃(t)−
∫ t

ti

eA(t−ℓ)δ3(ℓ)dℓ, (21)

where M is the function defined in (16). Observe that the

requirement (12) in Assumption 2 and Lemma 2 in Appendix

ensure that M (t, ti) is invertible for all t ∈ [ti, ti+1). Thus,

for all t ∈ [ti, ti+1),

˙̃x(t) =
[

A+LM (t, ti)
−1

]

x̃(t)+δ4(t, ti). (22)

It follows that (15) is satisfied for all t ∈ [ti, ti+1).

Next, we analyze the stability of the system (15) through

a Lyapunov approach. To conduct this analysis, we introduce

the positive-definite quadratic function

S (ξ ) = ξ⊤Sξ , (23)



where S is a symmetric positive-definite matrix such that

(11) is satisfied. Its derivative along the trajectories of (15)

satisfies, for all t ∈ [ti, ti+1),

Ṡ (t) = 2x̃(t)⊤S
[

H +L(M (t, ti)
−1 − I)

]

x̃(t)
+2x̃(t)⊤Sδ4(t, ti).

(24)

By (11) and the triangle inequality, it follows that, for all

t ∈ [ti, ti+1),

Ṡ (t) ≤ − 3
4
||x̃(t)||2

+2||SL||
∣

∣

∣

∣M (t, ti)
−1 − I

∣

∣

∣

∣ ||x̃(t)||2
+4||S||2||δ4(t, ti)||2.

(25)

On the other hand, the requirement (12) in Assumption 2

and Lemma 2 imply that, for all t ∈ [ti, ti+1),

∣

∣

∣

∣M (t, ti)
−1 − I

∣

∣

∣

∣ ≤
(

2||L||
a∗

+1

)

(ea∗τ −1)ea∗τ (26)

and therefore

Ṡ (t) ≤ − 3
4
||x̃(t)||2

+ 2||SL||
(

2
a∗

+1
)

(ea∗τ −1)ea∗τ ||x̃(t)||2
+ 4||S||2||δ4(t, ti)||2.

(27)

From the requirement (13) in Assumption 2, we deduce that,

for all t ∈ [ti, ti+1),

Ṡ (t) ≤ − 1
2
||x̃(t)||2 +4||S||2||δ4(t, ti)||2. (28)

Finally, through lengthy but simple calculation, one can

prove that the ISS inequality

||x̃(t)|| ≤ c3e
s−t

4||S|| ||x̃(s)||+ c2 sup
ℓ∈[s,t]

(||δ1(ℓ)||+ ||δ2(ℓ)||),

(29)

with c2 =
√

2||S||c2

λS
, c3 =

√

||S||
λS

, is satisfied.

IV. INTERVAL OBSERVER FOR SYSTEMS WITH

DISCRETE-TIME MEASUREMENTS

In this section, our goal it to construct interval observers

for the system (8) under Assumptions 1 and 2.

A. Preliminary step

Before constructing interval observers, we need to intro-

duce a new assumption that pertains to the disturbances in

(8) and establish technical results.

Assumption 3: A continuous function δ d : [0,+∞) →
[0,+∞) is known, such that for all t ≥ 0 and l = 1,2,

||δl(t)|| ≤ δ d(t). (30)

We assume that the system (8) satisfies Assumptions 1

to 3. Then Theorem 1 applies and leads to the error equa-

tion (15). To facilitate the design of interval observers,

we need to transform this error equation into an equation

that is cooperative in the absence of δ4 and of the term

L
[

M (t, ti)
−1 − I

]

x̃(t). This can be done by applying the

technique of [23]. Since H is a constant and Hurwitz matrix,

[23] shows how to build a C∞ function P : R→R
n×n that is

invertible for all t ∈R, bounded in norm with a first derivative

bounded in norm and such that, for all t ∈ R,

Ṗ(t) = −P(t)H +GP(t), (31)

where G is a constant cooperative and Hurwitz matrix and

T : R→R
n×n, T (t) = P(t)−1 for all t ∈R is a C∞ function

bounded in norm. It follows that there exist a symmetric and

positive-definite matrix Q such that the matrix inequality

QG+G⊤Q 4 −I (32)

is satisfied and a positive real number

p∗ = sup
t∈R

{||P(t)||, ||Ṗ(t)||, ||P(t)−1||}. (33)

Now, we introduce the time-varying change of coordinates

m(t) = P(t)x̃(t). (34)

Using (15), elementary calculations give

ṁ(t) = Ṗ(t)x̃(t)
+P(t)

[

Hx̃(t)+L(M (t, ti)
−1 − I)x̃(t)+δ4(t, ti)

]

.
(35)

From (31), it follows that

ṁ(t) = GP(t)x̃(t)+P(t)L(M (t, ti)
−1 − I)x̃(t)

+P(t)δ4(t, ti)
= Gm(t)

+P(t)L(M (t, ti)
−1 − I)P(t)−1m(t)

+P(t)δ4(t, ti).

(36)

This leads us to the system

ṁ(t) = [G+R(t, ti)]m(t)+δ5(t, ti), (37)

with

R(t, ti) = P(t)L
[

M (t, ti)
−1 − I

]

P(t)−1,

δ5(t, ti) = P(t)δ4(t, ti).
(38)

It is worth noticing that the system ṁ(t) = Gm(t) is coopera-

tive but not necessarily the system ṁ(t) = [G+R(t, ti)]m(t).

One can check easily that the definition of δ4 in (17) and

(57) in Lemma 2 imply that, for all t ∈ [ti, ti+1),

||δ4(t, ti)|| ≤ ||δ3(t)||+2||L||e2a∗τ
∫ t

ti

||δ3(ℓ)||dℓ. (39)

This inequality, Assumption 2, the definition of p∗ in (33)

and δ3 = δ1 +Kδ2 imply that

||P(t)δ4(t, ti)|| ≤ p∗||δ1(t)+Kδ2(t)||
+2p∗||L||e2a∗τ

∫ t

ti

||δ1(ℓ)+Kδ2(ℓ)||dℓ
(40)

for all t ∈ [ti, ti+1). From Assumption 3 we deduce that, for

all integer i ∈ N and for all t ∈ [ti, ti+1), the inequalities

−δ∗(t) ≤ δ5(t, ti) ≤ δ∗(t) (41)

with

δ∗(t) = p∗(1+ ||K||)ψ(t)(1...1)⊤, (42)

with ψ(t) = ||δ d(t)||+ 2||L||e2a∗τ
∫ t

max{0,t−τ}
||δ d(ℓ)||dℓ, are

satisfied. Notice that the function δ∗ is continuous.



B. Interval observer

Denote the entries of the matrix function R(t, ti) defined

in (38) by rk,l(t, ti) and the entries of the matrix G by gk,l

and recall that T −1(t) = P(t). Let

R+(t, ti) = (r+
k,l(t, ti)),

R−(t, ti) = R+(t, ti)−R(t, ti),
P+(t) = max{P(t),0},
P−(t) = P+(t)−P(t),
T +(t) = max{P(t)−1,0}
T −(t) = T +(t)−P(t)−1,

(43)

with r+
k,l(t, ti) = rk,l(t, ti) if k = l or gk,l + rk,l(t, ti) ≥ 0 and

r+
k,l(t, ti) = 0 if k 6= l and gk,l + rk,l(t, ti) ≤ 0.

Observe for later use that G+R+ is a cooperative function

and all functions R−, P+, P−, T + and T − are nonneg-

ative.

We are ready to prove the following result.

Theorem 2: Consider the system (8) under Assumptions

1 to 3. Let G and p∗ be the matrix and the constant defined

in Section IV-A. Then the system described by






















˙̂x(t) = Ax̂(t)+Bu(t)+K[Cx̂(ti)− y(t)],
ṁ+(t) = [G+R+(t, ti)]m

+(t)
−R−(t, ti)m

−(t)+δ∗(t),
ṁ−(t) = [G+R+(t, ti)]m

−(t)
−R−(t, ti)m

+(t)−δ∗(t),

(44)

when t ∈ [ti, ti+1), with δ∗ defined in (42), and associated at

t = s0 ≥ 0 with the initial conditions




x̂0

m+
0

m−
0



 =





x̂0

P+(s0)x̃
+
0 −P−(s0)x̃

−
0

P+(s0)x̃
−
0 −P−(s0)x̃

+
0



 (45)

with x̃+
0 = x+

0 − x̂0, x̃−0 = x−0 − x̂0 and the bounds

x+(t) = x̂(t)+T +(t)m+(t)−T −(t)m−(t),
x−(t) = x̂(t)+T +(t)m−(t)−T −(t)m+(t),

(46)

is an interval observer for the system (8) when either for all

integer i ∈ N and all t ∈ [ti, ti+1), the matrix G+R+(t, ti) is

cooperative or

τ ∈ (0,τB] , (47)

with

τB = 1
a∗

ln
(

1
2
+ 1

2

√
1+b∗

)

, (48)

with
b∗ = 2a∗

(||SL||+2p4∗
√

n||S||||L||)(2||L||+a∗)
.

Proof. Since the functions ρ+ : R → R
n×n and ρ− : R →

R
n×n defined by ρ+(t) = R+(t, ti), ρ−(t) = R−(t, ti) for all

t ∈ [ti, ti+1) and all positive integers i are discontinuous, the

(m+,m−)-subsystem (44) is discontinuous with respect to

t. However ρ+ and ρ− are piecewise-continuous. Hence,

existence and uniqueness of the solutions are guaranteed.

The solutions of the systems (8) and (44) are thus defined

over [0,+∞) when u(·), δ∗(·) and δ1(·) are bounded on any

interval [0, t), t > 0.

Now, for the sake of simplicity, we consider the initial

time s0 = 0. The case where s0 > 0 can be handled similarly.

Let x0 ∈ R
n be an initial condition of (8) at the instant

t = 0. Let x+
0 ∈ R

n, x−0 ∈ R
n be such that x−0 ≤ x0 ≤ x+

0 .

Let (x̂0,m
+
0 ,m−

0 ) ∈ R
3n, be an initial condition of (44) at the

instant t = 0 satisfying

m+
0 = P+(0)(x+

0 − x̂0)−P−(0)(x−0 − x̂0),
m−

0 = P+(0)(x−0 − x̂0)−P−(0)(x+
0 − x̂0).

(49)

Next, we consider the solutions of (8) and (44) with respec-

tively x0 and (x̂0,m
+
0 ,m−

0 ) as initial condition at t = 0. We

denote these solutions (x(t), x̂(t),m+(t),m−(t)). Since the

functions P+ and P− are nonnegative, the inequalities

P+(0)x−0 ≤ P+(0)x0 ≤ P+(0)x+
0 ,

P−(0)x−0 ≤ P−(0)x0 ≤ P−(0)x+
0 ,

(50)

are satisfied. It follows that

P+(0)x−0 −P−(0)x+
0 ≤ P(0)x0,

P(0)x0 ≤ P+(0)x+
0 −P−(0)x−0 .

(51)

From the equality P+(0)−P−(0) = P(0), (49) and (51),

we deduce that m−
0 ≤ P(0)x0 −P(0)x̂0 ≤ m+

0 , or, equiva-

lently,

m−
0 ≤ P(0)x̃0 ≤ m+

0 , (52)

with x̃0 = x0 − x̂0. On the other hand, we know that m(t) =
P(t)x̃(t), with x̃(t) = x(t)− x̂(t) and m0 = P(0)x̃0 as initial

condition, is solution of (37). Our next objective is to prove

that, for all t ≥ 0, m−(t) ≤ m(t) ≤ m+(t), where m+(t) and

m−(t) are the components of the solution defined above. To

prove this, we introduce the notation

m+(t) = m+(t)−m(t), m−(t) = m(t)−m−(t). (53)

Bearing (37) and (44) in mind, using (43) and grouping the

terms, we obtain, for all t ∈ [ti, ti+1),














ṁ
+
(t) = [G+R+(t, ti)]m

+(t)
+R−(t, ti)m

−(t)+δ∗(t)−δ5(t, ti),

ṁ
−
(t) = [G+R+(t, ti)]m

−(t)
+R−(t, ti)m

+(t)+δ5(t, ti)+δ∗(t).

(54)

From (52), we deduce that m+(0)≥ 0 and m−(0)≥ 0. Since

G+R+(t, ti) is cooperative for all i ∈ N and t ∈ [ti, ti+1) and

the functions R−(t, ti), δ∗(t)− δ5(t, ti), δ5(t, ti) + δ∗(t) are

nonnegative (see (43) and (41)), it follows that m+(t)≥ 0 and

m−(t)≥ 0 for all t ∈ [t0, t1). Since the solution (m+(t),m−(t))
is continuous, it follows that m+(t1) ≥ 0 and m−(t1) ≥ 0.

Next, we prove by induction that, for any integer i ∈ N, and

any t ∈ [ti, ti+1], m+(t) ≥ 0 and m−(t) ≥ 0. Consequently,

the inequalities m−(t) ≤ m(t) ≤ m+(t) are satisfied for all

t ≥ 0. From this inequality, we can deduce, through cal-

culations omitted for the sake of conciseness, that for all

t ≥ 0, x−(t) ≤ x(t) ≤ x+(t), with (x+(t),x−(t)) defined in

(46). Consequently, (44) with the initial conditions (45) and

the bounds (46), is a framer for (8). Thus, to prove that

(44) is an interval observer for the system (8), it remains

to demonstrate that lim
t→+∞

||x+(t)− x−(t)|| = 0 when δ∗ is

not present. Since the functions ||T +|| and ||T −|| are

bounded, the equality lim
t→+∞

||x+(t)− x−(t)|| = 0 is satisfied

if lim
t→+∞

||m+(t)−m−(t))|| = 0. Due to space limitation, the

proof of this is omitted.



V. CONCLUSION

Under a detectability assumption, we have constructed a

family of interval observers for all linear time-invariant sys-

tems with bounded additive disturbances and discrete-time

measurements affected by bounded additive noise. Much

remains to be done. A comparison to an approach where the

discrete-time measurements are taken into account by set-

inversion via interval analysis [16], [17] will be the subject of

a future study. Extensions to nonlinear, time-varying systems

or to systems with delay may be also the subject of future

work.
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[3] O. Bernard, J.-L. Gouzé, Closed loop observers bundle for uncertain

biotechnological models. Journal of Process Control, 14, 765-774,
2004.

[4] D. P. Bertsekas, I. B. Rhodes, Recursive state estimation for a set-
membership description of uncertainty. 16(2):117–128, 1971.

[5] F. L. Chernousko, Optimal guaranteed estimates of indeterminacies

with the aid of ellipsoids. Engrg. Cybernetics, 18:1–9, 1980.
[6] F. L. Chernousko, State Estimation for Dynamic Systems. CRC Press,

Boca Raton, FL, 1994.
[7] L. Chisci, A. Garulli, G. Zappa, Recursive state bounding by

parallelotopes. Automatica, 32:1049–1056, 1996.
[8] F. Deza, E. Busvelle, J.P. Gauthier, D. Rakotopara, High gain esti-

mation for nonlinear systems. Systems and Control Letters, 18 (4):
295-299, 1992.

[9] A. Gelb, Applied Optimal Estimation. MIT Press, Cambridge, MA,
1974.

[10] G. Goffaux, A. Vande Wouwer, O. Bernard, Improving continuous-

discrete interval observers with application to microalgae-based bio-

process. Journal of Process Control, 19 (7), 1182-1190, 2009.
[11] G. Goffaux, A. Vande Wouwer, O. Bernard, Continuous-discrete

interval observers for monitoring microalgae cultures. Biotechnol.
Prog., Vol. 25, No. 3, 2009.
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APPENDIX

Lemma 1: Let M ∈ R
l×l be a matrix whose entries are

denoted by mi j. Let N ∈R
l×l be any matrix, whose entries ni j

are such that either ni j = mi j or ni j = 0. Then ||N|| ≤√
n||M||.

Proof. The proof is omitted because of page limitation.

Lemma 2: Let A ∈ R
n×n and L ∈ R

n×n be constant matri-

ces. Let M be the function defined in (16). Let τ be a real

number such that

0 < τ ≤ 1

a∗
ln

(

1+
a∗

2||L||

)

(55)

where a∗ is a real number such that a∗ > 0, a∗ ≥ ||A||.
Then for all s ∈ R and t ∈ [s,s+ τ], the matrix M (t,s) is

invertible and, for all s ∈ R and t ∈ [s,s+ τ]

||M (t,s)−1 − I|| ≤
(

2
||L||
a∗

+1

)

(ea∗τ −1)ea∗τ (56)

and

||M (t,s)−1|| ≤ 2ea∗τ . (57)

Proof. The proof is omitted because of page limitation.


