Equidimensional triangularization of multidimensional linear systems
Alban Quadrat

To cite this version:
Alban Quadrat. Equidimensional triangularization of multidimensional linear systems. 7th International Workshop on Multidimensional (nD) systems (nDS'11), Sep 2011, Poitiers, France. pp.1-8. hal-00760101

HAL Id: hal-00760101
https://hal-supelec.archives-ouvertes.fr/hal-00760101
Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Equidimensional triangularization of multidimensional linear systems

Alban Quadrat

Abstract—Based on the results obtained in [12] on the purity filtration of a finitely presented module associated with a multidimensional linear system, this paper aims at obtaining an equivalent block-triangular representation of the multidimensional linear system defined by equidimensional diagonal blocks. The multidimensional linear system can then be integrated in cascade by solving equidimensional homogeneous linear systems. Many multidimensional linear systems defined by under/overdetermined linear systems of partial differential equations can be explicitly solved by means of the PurityFiltration and AbelianSystems packages, but cannot be computed by classical computer algebra systems such as Maple. The results developed in this paper generalize those obtained in the literature on Monge parametrizations and on the classification of autonomous elements by their codimensions.

I. INTRODUCTION

This paper is the continuation of [12]. We refer the reader to [12] for the notations and the results used in what follows.

We recall that D denotes a noetherian domain with a finite global dimension $\text{gl}(D) = n$ and which satisfies

$$\forall i \in \mathbb{N} = \{0, 1, 2, \ldots,\}, \text{ ext}_D^i(\text{ext}_D^{i+1}(M, D), D) = 0,$$

for all left D-modules M. For more details, see [5], [12]. In particular, these conditions hold for a Auslander regular ring D [4], [5] such as, for instance, the commutative polynomial ring $D = k[x_1, \ldots, x_n]$ in x_1, \ldots, x_n with coefficients in a field k or the noncommutative polynomial rings $A_n(k)$ (resp., $B_n(k)$, $D_n(k)$ and $\text{D}_{\text{n}}(k)$) of partial differential (PD) operators in $\partial_i = \frac{\partial}{\partial x_i}, i = 1, \ldots, n$, with coefficients in the ring $k[x_1, \ldots, x_n]$ (resp., the ring $k[x_1, \ldots, x_n]$ of rational functions, the ring $k[x_1, \ldots, x_n]$ of formal power series, or the ring $\mathbb{R}\{x_1, \ldots, x_n\}$ of locally convergent power series), where k is a field of characteristic 0 (e.g., $k = \mathbb{Q}, \mathbb{R}, \mathbb{C}$) [4].

The purpose of this paper is to apply Theorem 3.1 and Corollary 3.1 of [12] to the short exact sequences defined in (42) of [12] to determine a new finite presentation of the left D-module $M = D^{1\times p}/(D^{1\times q} R)$ defined by a block-triangular matrix P formed by block-diagonal matrices defining finite presentations of the pure left D-modules $M/\mathfrak{m}(M)$, $\text{coker} \gamma_{21}$ and $\text{coker} \gamma_{32}$ defined in [12], and of the left D-module $\text{ext}_D^3(N_{33}, D)$ of grade greater or equal to 3 (which is also pure when $\text{ker}_D(R_3) = 0$). For more details and definitions, we refer the reader to [12].

II. MAIN RESULTS

Let us now precisely describe the left D-homomorphisms γ_{32} and γ_{21} and the left D-modules $\text{coker} \gamma_{32}$ and $\text{coker} \gamma_{21}$ defined in [12] (see (41) and (42)). Applying the contravariant left exact functor $\text{hom}_D(\cdot, D)$ to the commutative diagram defined in Fig. 3 of [12], we obtain the following commutative diagram formed by horizontal complexes:

$$
\begin{align*}
& D^{1\times p_{-13}} \xrightarrow{R_{03}} D^{1\times p_{03}} \xrightarrow{R_{13}} D^{1\times p_{13}} \\
& \downarrow .F_{-13} \quad \downarrow .F_{03} \quad \downarrow .F_{13} \\
& D^{1\times p_{-12}} \xrightarrow{R_{02}} D^{1\times p_{02}} \xrightarrow{R_{12}} D^{1\times p_{12}} \\
& \downarrow .F_{-12} \quad \downarrow .F_{02} \quad \downarrow .F_{12} \\
& D^{1\times p_{-11}} \xrightarrow{R_{01}} D^{1\times p_{01}} \xrightarrow{R_{11}} D^{1\times p_{11}}.
\end{align*}
$$

Using (34) of [12], the defect of exactness of the top (resp., middle, bottom) horizontal complex of (1) is $\text{ext}_D^1(N_{13}, D)$ (resp., $\text{ext}_D^2(N_{12}, D)$, $\text{ext}_D^3(N_{11}, D)$). Let us introduce the canonical projections defined in (2). The commutative diagram (1) induces the two left D-homomorphisms:

$$
\begin{align*}
& \text{ker}_D(R_{03})/(D^{1\times p_{13}} R_{13}) \xrightarrow{\alpha_{32}} \text{ker}_D(R_{02})/(D^{1\times p_{12}} R_{12}) \\
& \rho_3(\lambda) \quad \rightarrow \quad \rho_2(\lambda F_{03}), \\
& \text{ker}_D(R_{02})/(D^{1\times p_{12}} R_{12}) \xrightarrow{\alpha_{21}} \text{ker}_D(R_{01})/(D^{1\times p_{11}} R_{11}) \\
& \rho_2(\mu) \quad \rightarrow \quad \rho_1(\mu F_{02}).
\end{align*}
$$

(3)

Two chases in the commutative diagram (1) show that ρ_3 and ρ_2 are well-defined (see, e.g., [17]).

Let us now use Proposition 2.2 of [12] to get a finite presentation of the left D-modules $\text{ext}_D^1(N_{33}, D)$, $\text{ext}_D^2(N_{22}, D)$, and $\text{ext}_D^3(N_{11}, D)$. Let $R_{1k} \in D^{p_{1k} \times p_{1k}}$ be such that $\text{ker}_D(R_{0k}) = D^{1\times p_{1k}} R_{1k}$ for $k = 1, 2, 3$. Since $D^{1\times p_{1k}} R_{1k} \subseteq D^{1\times p_{1k}} R_{1k}$, there exists $R'_{1k} \in D^{p_{1k} \times p_{1k}}$ such that:

$$
R_{1k} = R'_{1k} R'_{1k}.
$$

(5)

Let $R_{2k} \in D^{p_{2k} \times p_{2k}}$ be a matrix such that $\text{ker}_D(R'_{1k}) = D^{1\times p_{2k}} R_{1k}$. Then, using Proposition 2.2 of [12], we obtain the left D-homomorphism defined by (6), where

$$
L_k \triangleq D^{1\times p_{1k}}/(D^{1\times p_{1k}} R_{1k} + D^{1\times p_{2k}} R_{2k}),
$$

and $\rho_k' : D^{1\times p_{1k}} \longrightarrow L_k$ is the canonical projection.

Since $R_{1k} F_{0k} R_{0(k-1)} = R_{1k} R_{0k} F_{-1k} = 0$, then $D^{1\times p_{1k}} (R_{1k} F_{0k}) \subseteq \text{ker}_D(R_{0(k-1)}) = D^{1\times p_{1(k-1)}} R_{1(k-1)}$, and thus there exists $F_{1k} \in D^{p_{1k} \times p_{1(k-1)}}$ such that:

$$
\forall k = 2, 3, \quad R'_{1k} F_{0k} = F'_{1k} R'_{1(k-1)}.
$$

(7)
\[\rho_3 : \ker D(R_{03}) \rightarrow \ker D(R_{03})/(D^{1 \times \rho_{11}} R_{13}) \cong \text{ext}_D^1(N_{13}, D) \cong \text{ext}_D^3(N_{33}, D), \]
\[\rho_2 : \ker D(R_{02}) \rightarrow \ker D(R_{02})/(D^{1 \times \rho_{12}} R_{12}) \cong \text{ext}_D^1(N_{12}, D) \cong \text{ext}_D^2(N_{22}, D), \]
\[\rho_1 : \ker D(R_{01}) \rightarrow \ker D(R_{01})/(D^{1 \times \rho_{11}} R_{11}) \cong \text{ext}_D^1(N_{11}, D) \cong t(M). \]

\[\chi_k : L_k \cong D^{1 \times \rho_{1k}}/(D^{1 \times \rho_{1k}} R_{1k} + D^{1 \times \rho_{2k}} R_{2k}) \rightarrow (D^{1 \times \rho_{1k}} R_{1k})/(D^{1 \times \rho_{1k}} R_{1k}) \cong \text{ext}_D^1(N_{1k}, D), \]
\[\rho_k(\lambda) \mapsto \rho_k(\lambda R_{1k}). \]

Similarly, there exists \(F_{2k} \in D^{p_{2k}} \) such that:
\[\forall k = 2, 3, \quad R_{2k}' F_{1k}' = F_{2k}' R_{2k}'(k-1). \]

Thus, we obtain the commutative exact diagram (9).

Remark 2.1: If \(R_{0k} = 0 \), i.e., \(\ker D(R_{1k}) = 0 \), then applying the functor \(\text{Hom}_D(D, \cdot) \) to the short exact sequence
\[0 \rightarrow D^{p_{0k}} R_{1k}, \quad D^{p_{1k}} \rightarrow N_k \rightarrow 0, \]
we get the complex \(0 \rightarrow D^{1 \times \rho_{1k}} R_{1k} \rightarrow D^{1 \times \rho_{1k}}, \) which yields \(\ker D(R_{0k}) = D^{1 \times \rho_{0k}} \), i.e.:
\[R_{1k}' = I_{p_{0k}}, \quad R_{1k} = p_{0k}, \quad R_{2k}' = 0. \]

Let us now deduce two identities which will be used in what follows. Combining (30) of [12] for \(k = 2 \) with (5) for \(k = 1 \) and \(2 \), and with (7) for \(k = 2 \), we obtain
\[R_{11}' R_{11} = R_{11} = R_{12} F_{02} = R_{12}' R_{12} F_{02} = R_{12}' R_{12} F_{12}' R_{11}. \]

and thus \((R_{11}' - R_{12}' R_{12}' R_{11} = 0, \) i.e.,
\[D^{1 \times \rho_{11}} (R_{11}' - R_{12}' R_{12}' R_{11} \subseteq \ker D(R_{11}') = D^{1 \times \rho_{11}} R_{21}, \]
which proves the existence of \(X_{12} \in D^{p_{11} \times p_{21}} \) such that:
\[R_{11}' = R_{11}' R_{12}' + X_{12} R_{21}. \]

Combining (31) of [12] for \(k = 3 \) with (5) for \(k = 2 \) and \(k = 3 \), and with (7) for \(k = 2 \), we obtain
\[F_{13} (R_{12}' R_{12}') = F_{13} R_{12} = R_{13} F_{03} = (R_{13}' R_{13}') = R_{13}' F_{13} R_{12}, \]
and thus \((F_{13} R_{12}' - R_{13}' R_{13}' R_{12} = 0, \) i.e.,
\[D^{1 \times \rho_{13}} (F_{13} R_{12}' - R_{13}' R_{13}' R_{12} \subseteq \ker D(R_{12}') = D^{1 \times \rho_{22}} R_{22}, \]
which proves the existence of \(X_{22} \in D^{p_{13} \times p_{22}} \) such that:
\[F_{13} R_{12}' - R_{13}' R_{13}' = X_{22} R_{22}. \]

Using \(t(M) \cong \text{ext}_D^1(N_{13}, D) \) (see (2) and (12)) and the isomorphisms \(\chi_k \) as defined by (6), we get:
\[\left\{ \begin{array}{l}
L_1 = D^{1 \times \rho_{11}}/(D^{1 \times \rho_{11}} R_{11}' + D^{1 \times \rho_{21}} R_{21}') \\
\cong \text{ext}_D^1(N_{11}, D) \cong t(M),
\end{array} \right.
\[L_2 = D^{1 \times \rho_{12}}/(D^{1 \times \rho_{12}} R_{12}' + D^{1 \times \rho_{22}} R_{22}') \\
\cong \text{ext}_D^2(N_{22}, D),
\]
\[L_3 = D^{1 \times \rho_{13}}/(D^{1 \times \rho_{13}} R_{13}' + D^{1 \times \rho_{23}} R_{23}') \\
\cong \text{ext}_D^3(N_{33}, D). \]

Then, we can define the left \(D \)-homomorphism
\[\bar{\alpha}_{32} = \chi_2^{-1} \circ \alpha_{32} \circ \chi_3 : L_3 \rightarrow L_2, \]
where the \(\chi_k \)’s are defined by (6) and \(\alpha_{32} \) is defined by (3).

Using (7) for \(k = 3 \), we have
\[\bar{\alpha}_{32}(\rho_3(\lambda)) = (\chi_3^{-1} \circ \alpha_{32}) (\rho_3(\lambda R_{13}) = \chi_2^{-1} (\rho_2(\lambda R_{13} F_{03})) \]
\[= \chi_2^{-1} (\rho_2(\lambda F_{13}')) = \rho_2(\lambda F_{13}), \]

for all \(\lambda \in D^{1 \times \rho_{13}} \). Using (11) and (8) for \(k = 3 \), we get
\[(R_{13}' F_{13}' - F_{13}' R_{13}' R_{13}' \cong 0, \]
which yields the commutative exact diagram (14).

Up to isomorphism, the short exact sequence
\[0 \rightarrow \text{ext}_D^3(N_{33}, D) \rightarrow \text{ext}_D^3(N_{22}, D) \rightarrow \text{coker}_3 \rightarrow 0 \]
(see [12]) becomes the following short exact sequence:
\[0 \rightarrow L_3 \rightarrow L_2 \rightarrow \text{coker}_3 \rightarrow 0. \]

Using 3 of Proposition 3.1 of [8], the left \(D \)-module \(\text{coker}_3 \) is then defined by:
\[\text{coker}_3 = D^{1 \times \rho_{12}}/(D^{1 \times \rho_{13}} R_{13} + D^{1 \times \rho_{12}} R_{12}' + D^{1 \times \rho_{22}} R_{22}). \]

Then, we can easily check that the commutative exact diagram (16) holds, where \(\psi_2 : D^{1 \times (p_{13} + p_{12} + p_{22})} \rightarrow L_3 \)
the left \(D \)-homomorphism defined by:
\[\psi_2(\epsilon_i) = \left\{ \begin{array}{ll}
\rho_3(\epsilon_i) & i = 1, \ldots, p_{13}, \\
0 & i = p_{13} + 1, \ldots, p_{13} + p_{12} + p_{22}. \end{array} \right. \]

Applying Theorem 3.1 of [12] to the short exact sequence (15) with the matrix
\[A = \left(\begin{array}{cc}
I_{p_{13}'} & 0 \\
0 & 0 \end{array} \right) \in D^{(p_{13} + p_{12} + p_{22}) \times p_{13}} , \]
(see also Corollary 3.1 of [12]), we obtain the following characterization of the left \(D \)-module \(L_2 \) in terms of the presentations of \(L_3 \cong \text{ext}_D^3(N_{33}, D) \) and \(\text{coker}_3 \).
More precisely, using (Malgrange’s theorem (see Theorem 1.1 of [12]), we obtain:

$$D_{13} \cong D_{13}' = D_{13}''' = D_{13}'''. $$

If \(F \) is a left \(D \)-module, then

$$\ker_F(Q_2) \cong \ker_F(P_2), $$

and the following equivalence

$$\begin{cases} R_{12}'' v = 0, \\ R_{22}'' v = 0, \end{cases} \quad \iff \begin{cases} F_{13}'' \tau_2 - \tau_3 = 0, \\ R_{12}'' \tau_2 = 0, \\ R_{22}'' \tau_2 = 0, \\ R_{13}' \tau_3 = 0, \\ R_{23}' \tau_3 = 0, \end{cases} $$

holds under the following invertible transformations:

$$\delta : \ker_F(P_2) \longrightarrow \ker_F(Q_2), \quad \begin{bmatrix} \tau_2 \\ \tau_3 \end{bmatrix} \longmapsto \begin{bmatrix} I_{R_{12}''} \\ F_{13}'' \end{bmatrix} v, \quad \begin{bmatrix} \tau_2 \\ \tau_3 \end{bmatrix} \longmapsto \begin{bmatrix} I_{R_{12}''} \\ F_{13}'' \end{bmatrix} v. \quad (18)$$

Let us now introduce the left \(D \)-homomorphism

$$\alpha_{21} = \chi_{12}^{-1} \circ \alpha_{21} \circ \chi_2 : L_2 \longrightarrow L_1,$$

where the \(\chi_i \)'s are defined by (6) and \(\alpha_{21} \) is defined by (4). Then, using (7) for \(k = 2 \), for all \(\mu \in D_{13}'' \), we get

$$\alpha_{21}(\rho_2(\mu)) = (\chi_1^{-1} \circ \alpha_{21})(\rho_2(\mu R_{12}'')) = \chi_1^{-1}(\rho_1(\mu R_{12}' F_{13}'')) = \chi_1^{-1}(\rho_1(\mu F_{12}' R_{11}')) = \rho_1'(\mu F_{12}'). \quad (19)$$

\(\)
Moreover, using (10) and (8) for $k = 2$, we have

\[
\begin{pmatrix} R''_{12} \\ R''_{22} \end{pmatrix} F'_{12} = \begin{pmatrix} R'_{11} - X_{12} R'_{21} \\ F'_{22} R''_{21} \end{pmatrix} = \begin{pmatrix} I_{p_1} - X_{12} \\ 0 \\ F''_{22} \end{pmatrix} \begin{pmatrix} R'_{11} \\ R''_{21} \end{pmatrix},
\]

which yields the commutative exact diagram (20). Up to isomorphism, the short exact sequence

\[
0 \longrightarrow \text{ext}^2_\mathcal{D}(\mathcal{O}_2, D) \xrightarrow{\nabla_{21}} t(M) \longrightarrow \text{coker} \gamma_{21} \longrightarrow 0,
\]

(see [12]) becomes the following short exact sequence

\[
0 \longrightarrow L_2 \xrightarrow{\pi_{21} \circ \phi_{21}} L_1 \xrightarrow{\theta_1} \text{coker} \pi_{21} \longrightarrow 0, \quad (21)
\]

where, using 3 of Proposition 3.1 of [8], the left D-module \(\text{coker} \pi_{21} \) is defined by:

\[
\text{coker} \pi_{21} = D^1 \times \mathcal{C}_1 / (D^1 \times \mathcal{C}_1 F_{12} + D^1 \times \mathcal{C}_1 R'_{11} + D^1 \times \mathcal{C}_1 R''_{21}).
\]

Using the left D-isomorphism \(\phi_{21}^{-1} : E_2 \longrightarrow L_2 \) defined by (17), the short exact sequence (21) yields the following exact sequence

\[
0 \longrightarrow E_2 \xrightarrow{\pi_{21} \circ \phi_{21}} L_1 \xrightarrow{\theta_1} \text{coker} \pi_{21} \longrightarrow 0, \quad (22)
\]

where \(\pi_{21} \circ \phi_{21} : E_2 \longrightarrow L_1 \) is defined by:

\[
(\pi_{21} \circ \phi_{21})(\phi_2(\nu)) = \pi_{21} \left(\phi_2 \left(\begin{pmatrix} \nu \\ I_{p_{12}}/F'_{13} \end{pmatrix} \right) \right) = \phi_1 \left(\begin{pmatrix} \nu \\ F'_{12}/F'_{13} \end{pmatrix} \right).
\]

Now, we can check that the commutative exact diagram (23) holds, where \(\psi_1 : D^1 \times (p_{12} + p_{11} + p_{21}) \longrightarrow E_2 \) is the left D-homomorphism defined by

\[
\psi_1(f_j) = \begin{cases} \phi_2(f_j F) & j = 1, \ldots, p'_{12}, \\ 0 & j = p'_{12} + 1, \ldots, p'_{12} + p_{11} + p_{21}, \end{cases}
\]

where \(\{f_j\}_{j=1,\ldots,p'_{12}+p_{11}+p_{21}} \) is the standard basis of \(D^1 \times (p'_{12} + p_{11} + p_{21}) \) and:

\[
F = \begin{pmatrix} I_{p'_{12}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \in D^{(p'_{12} + p_{11} + p_{21}) \times (p'_{12} + p_{13})},
\]

\[
\begin{pmatrix} F'_{12} & -I_{p'_{12}} \\ R''_{11} & 0 \\ R''_{21} & 0 \\ 0 & F'_{13} \\ -I_{p'_{13}} \\ R''_{11} & 0 \\ 0 & R''_{22} \end{pmatrix} \in D^{r \times (p'_{11} + p'_{12} + p'_{13})},
\]

and let us consider the following two matrices

\[
P_1 = \begin{pmatrix} F'_{12} & -I_{p'_{12}} & 0 \\ R''_{11} & 0 & 0 \\ R''_{21} & 0 & 0 \\ 0 & F'_{13} & -I_{p'_{13}} \\ 0 & R''_{11} & 0 \\ 0 & R''_{22} & 0 \\ 0 & 0 & R''_{13} \end{pmatrix} \in D^{(p'_{11} + p'_{12}) \times p'_{11}},
\]

and the following two finitely presented left D-modules:

\[
\begin{pmatrix} L_1 = D^1 \times (p'_{11} + p'_{12})/Q_1, \\ E_1 = D^1 \times (p'_{11} + p'_{12} + p'_{13})/P_1, \end{pmatrix}
\]

If \(\vartheta : L_1 \longrightarrow E_1 \) is the canonical projection, then \(E_1 \cong L_1 \), where the left D-isomorphism is defined by:

\[
\begin{align*}
\vartheta : L_1 & \longrightarrow E_1 \\
\rho_1'(\nu) & \vartheta_1(\nu(I_{p'_{11}} 0 0)), \\
\vartheta^{-1} : E_1 & \longrightarrow L_1 \\
\rho_1(\lambda) & = \rho_1'(\nu),
\end{align*}
\]

Finally, we have \(L_1 \cong t(M) \) and:

\[
\vartheta : L_1 \longrightarrow t(M) \\
\vartheta^{-1} : t(M) \longrightarrow L_1 \\
\rho_1'(\nu) & = \pi(\nu R'_{11}), \\
\pi(\nu R'_{11}) & = \rho_1'(\nu).
\]

If \mathcal{F} is a left D-module, then applying the functor $\text{hom}_D(\cdot, \mathcal{F})$ to the isomorphism $E_1 \cong L_1$, and using Malgrange’s theorem (see Theorem 1.1 of [12]), we obtain:

\[
\ker \mathcal{F}(Q_1) \cong \ker \mathcal{F}(P_1).
\]

More precisely, using (24), we get the following corollary.

Corollary 2.2: If \mathcal{F} is a left D-module, then we have

\[
\ker \mathcal{F}(Q_1) \cong \ker \mathcal{F}(P_1),
\]

and the following equivalence

\[
\begin{pmatrix} R''_{11} \theta = 0 \\ R''_{21} \theta = 0 \end{pmatrix} \iff \begin{pmatrix} F'_{12} \tau_1 - \tau_2 = 0 \\ R''_{11} \tau_1 = 0 \\ R''_{21} \tau_1 = 0 \\ F'_{13} \tau_2 - \tau_3 = 0 \\ R''_{11} \tau_2 = 0 \\ R''_{22} \tau_2 = 0 \\ R''_{13} \tau_3 = 0 \\ R''_{23} \tau_3 = 0
\end{pmatrix}.
\]
holds under the following invertible transformations:

\[
\varpi : \ker_{\mathcal{F}}(P_1) \longrightarrow \ker_{\mathcal{F}}(Q_1). \]
\[
\begin{pmatrix}
\tau_1 \\
\tau_2 \\
\tau_3
\end{pmatrix}
\longmapsto
\begin{pmatrix}
\theta = \tau_1, \\
\theta = \tau_2, \\
\theta = \tau_3
\end{pmatrix}
\]

and let us consider the following left \(D\)-modules:

\[
P \in D^{s \times (p_{11} + p'_{12} + p'_{13} + p'_{22})}
\]

be defined by

\[
P = \begin{pmatrix}
R_{11}' & -I_{p_{11}'} & 0 & 0 \\
0 & F_{12}' & -I_{p_{12}'} & 0 \\
0 & R_{12}' & 0 & 0 \\
0 & 0 & 0 & R_{22}' \\
0 & 0 & 0 & R_{23}'
\end{pmatrix},
\]

and let us consider the following left \(D\)-isomorphism defined by:

\[
\varphi : D^{1 \times (p_{11} + p'_{12} + p'_{13} + p'_{22})} \longrightarrow \ker_{\mathcal{F}}(P_1).
\]

Now, we can easily check that the commutative exact diagram (27) holds, where \(\psi : D^{1 \times p_{11}} \longrightarrow E_1\) is defined by

\[
\psi(\varphi) = \varphi(g) = \varphi(I_{p_{11}}(0 \ 0 \ 0)),
\]

and \(\varphi(g)\) is the standard basis of \(D^{1 \times p_{11}}\). Then, we can apply Theorem 3.1 of [12] to the short exact sequence (26) with the matrix

\[A = (I_{p_{11}}(0 \ 0 \ 0) \in D^{1 \times (p_{11} + p'_{12} + p'_{13} + p'_{22})}\) (see Corollary 3.1 of [12]) and we get the following theorem.

Theorem 2.1: With the hypotheses of Proposition 2.1 and the previous notations, let

\[
s = r + p'_{11} = p'_{11} + p'_{12} + p_{11} + p'_{21} + p_{13} + p_{12} + p'_{22} + p_{13} + p'_{23},
\]

\[
t = s - p_{11} = p'_{11} + p'_{12} + p_{12} + p'_{21} + p_{13} + p_{12} + p'_{22} + p_{13} + p'_{23}.
\]

Using (10), we note that the row of \(P\) containing the matrix \(R_{11}'\) can be removed. We get the following corollary of Theorem 2.1.

Corollary 2.3: With the hypotheses of Proposition 2.1 and the previous notations, if
and $Q \in D^{1 \times p_0' + p_1' + p_2' + p_3'}$ is the matrix defined by

\[
Q = \begin{pmatrix}
R_{11}' & -I_{p_1'} & 0 & 0 \\
0 & F_{12}' & -I_{p_2'} & 0 \\
0 & 0 & R_{21}' & 0 \\
0 & 0 & 0 & F_{13}'
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},
\]

then $M = D^{1 \times p_01}/(D^{1 \times p_1} R_{11})$ is isomorphic to

\[
M \cong E = D^{1 \times (p_0 + p_1' + p_2' + p_3')}/(D^{1 \times i} Q),
\]

where the isomorphism is defined by (28).

Corollary 2.3 were implemented by the author in the OREModules package [7] (Maple) called PurityFiltration [13]. See also the recent homalg package [1] (GAP4) called AbelianSystems [3] developed by Barakat and the author. The AbelianSystems package is more efficient than the first algorithm implemented in homalg based on the computation of spectral sequences [2], [4], [5].

If \mathcal{F} is a left D-module, then applying the functor $\text{hom}_D(\cdot, \mathcal{F})$ to $M \cong E$, and using Malgrange’s theorem, we obtain $\ker(\mathcal{F}(R_{11})) \cong \ker(\mathcal{F}(P)) = \ker(\mathcal{F}(Q))$. More precisely, using (28), we get the following corollary.

Corollary 2.4: If \mathcal{F} is a left D-module, then we have

\[
\ker(\mathcal{F}(R_{11})) \cong \ker(\mathcal{F}(P)) = \ker(\mathcal{F}(Q)),
\]

and the following system equivalence holds

\[
R_{11} \eta = 0 \iff \begin{cases}
R_{11}' \xi - \tau_1 = 0, \\
F_{12}' \tau_1 - \tau_2 = 0, \\
R_{21}' \tau_1 = 0, \\
F_{13}' \tau_2 - \tau_3 = 0, \\
F_{12}' \tau_2 = 0, \\
R_{22}' \tau_2 = 0, \\
R_{13}' \tau_3 = 0, \\
R_{23}' \tau_3 = 0,
\end{cases}
\]

(29)

under the following invertible transformations:

\[
\begin{align*}
\gamma : \ker(\mathcal{F}(Q)) & \longrightarrow \ker(\mathcal{F}(R_{11})) \\
\begin{pmatrix}
\xi \\
\tau_1 \\
\tau_2 \\
\tau_3
\end{pmatrix} & \longmapsto \begin{pmatrix}
\zeta \\
\tau_1 \\
\tau_2 \\
\tau_3
\end{pmatrix} = \begin{pmatrix}
I_{p_01} & R_{11}' \\
F_{12}' & F_{13}' & F_{12}' R_{11}'
\end{pmatrix} \eta,
\end{align*}
\]

(30)

Definition 2.1 ([5], [10]): A ring D is a Cohen-Macaulay ring if D is a noetherian ring equipped with a dimension function $\dim_D(\cdot)$ [10] such that:

\[
\text{codim}_D(M) \triangleq \dim_D(D) - \dim_D(M) = j_D(M) \triangleq \min\{i \geq 0 \mid \text{ext}^i_D(M, D) \neq 0\}.
\]

Example 2.1: If k is a field (resp., a field of characteristic 0), then the ring $D = k[x_1, \ldots, x_n]$ (resp., $D = A_n(k)$, $B_n(k)$, $D_n(k)$, $D_n(k)$) is a Cohen-Macaulay ring with $\dim_D(D) = n$ (resp., $\dim_D(D) = 2 n$, $\dim_D(D) = 2 n$, $\dim_D(D) = 2 n$) [4], [5].

Proposition 2.3 ([5]): If D is an Auslander regular ring, then $j_D(\text{ext}^i_D(M, D)) \geq i$ for all $i \in \mathbb{N}$ and for all left D-module M.

If D is a Cohen-Macaulay ring, using Theorem 3.1 of [12] and Proposition 2.3, then the left D-modules $\text{ext}^i_D(N_{33}, D)$, $\text{coker} \gamma_{32}$, $\text{coker} \gamma_{21}$ and $M/t(M)$ are either 0 or satisfy:

\[
\begin{cases}
\dim_D(\text{ext}^i_D(N_{33}, D)) \leq \dim_D(D) - 3, \\
\dim_D(\text{coker} \gamma_{32}) = \dim_D(D) - 2, \\
\dim_D(\text{coker} \gamma_{21}) = \dim_D(D) - 1, \\
\dim_D(M/t(M)) = \dim_D(D).
\end{cases}
\]

(31)

Remark 2.2: If $S_0 = R_{11}'$ and

\[
S_1 = \begin{pmatrix}
F_{12}' \\
R_{11}' \\
R_{21}'
\end{pmatrix}, \quad S_1' = \begin{pmatrix}
F_{12}' \\
R_{11}' \\
R_{21}'
\end{pmatrix},
\]

\[
S_2 = \begin{pmatrix}
F_{13}' \\
R_{12}' \\
R_{22}'
\end{pmatrix}, \quad S_3 = \begin{pmatrix}
F_{13}' \\
R_{12}' \\
R_{22}'
\end{pmatrix},
\]

then using (31), we get:

(27)
1) The linear system \(\ker \xi(S_3) \cong \text{hom}_D(L_3, \xi) \cong \text{hom}_D(\text{ext}_D^3(N_{33}, D), \xi) \) is either 0 or has dimension \(\leq \dim_D(D) - 3 \).

2) The linear system \(\ker \xi(S_2) \cong \text{hom}_D(\text{coker} \sigma_{q2}, \xi) \cong \text{hom}_D(\text{coker} \gamma_{32}, \xi) \) has dimension \(\dim_D(D) - 2 \) when it is non-trivial.

3) The linear system \(\ker \xi(S_1) = \ker \xi(S_1') \cong \text{hom}_D(\text{coker} \sigma_{q1}, \xi) \cong \text{hom}_D(\text{coker} \gamma_{21}, \xi) \) is either 0 or has dimension \(\dim_D(D) - 1 \).

4) The linear system \(\ker \xi(S_0) \cong \text{hom}_D(M/t(M), \xi) \) has dimension \(\dim_D(D) \) when it is non-trivial.

If \(R_3 \) has full row rank, i.e., \(\ker \xi(D, R_3) = 0 \), then \(N_{33} \cong \text{ext}_D^3(M, D) \), and thus \(\text{ext}_D^3(N_{33}, D) \cong \text{ext}_D^3(\text{ext}_D^3(M, D), D) \), and Theorem 4.1 of [12] yields
\[
\dim_D(\text{ext}_D^3(M, D)) = \dim_D(D) - 3,
\]
which shows that \(\ker \xi(S_3) \) is either 0 or has dimension \(\dim_D(D) - 3 \).

If \(\xi \) is an injective left \(D \)-module, then the linear system \(\ker \xi(R) = \ker \xi(R_{11}) \) can be obtained by integrating the linear system \(\ker \xi(Q) \), i.e., by integrating in cascade the linear system \(\ker \xi(S_3) \) of dimension less or equal to \(\dim_D(D) - 3 \), and then the inhomogeneous linear systems of dimension respectively \(\dim_D(D) - 2, \dim_D(D) - 1 \) and \(\dim_D(D) \). Finally, \(\ker \xi(R_{11}) = R_{10} F^{r-1} \) (see [12]).

Even if the size of the matrix \(Q \) is larger than the one of \(R = R_{11} \), the matrix \(Q \) is generally more suitable for a fine study of the module properties of \(M \cong E \) than \(R \), i.e., for the study of the structural properties of the linear system \(\ker \xi(R) \cong \ker \xi(Q) \). This new form is particularly interesting for the computation of \(\text{Monge parametrizations} \) [15], [16], [12] of the linear system \(\ker \xi(R) \). Many under/overdetermined linear PD systems \(\ker \xi(R) \), which cannot directly be integrated by computer algebra systems such as Maple, can be integrated by means of their equivalent forms \(\ker \xi(Q) \) using the \textsc{Purityfiltration} \cite{13}, \textsc{AbelianSystems} \cite{3} and \textsc{homalg} \cite{2} packages.

\textbf{Example 2.2:} Let us consider the \(D = \mathbb{Q}[\partial_1, \partial_2, \partial_3] \)-module \(M = D^{1 \times 4}/(D^{1 \times 6}) \) finitely presented by:
\[
R = \begin{pmatrix}
0 & -2 \partial_1 & \partial_3 - 2 \partial_2 - \partial_1 & \partial_1 - \partial_2 - \partial_3 & -1 \\
0 & -2 \partial_1 & 2 \partial_2 - 3 \partial_3 & 1 \\
0 & -6 \partial_1 & -2 \partial_2 - 5 \partial_3 & -1 \\
0 & \partial_3 - \partial_2 & \partial_3 - \partial_1 & 0 \\
0 & \partial_3 - \partial_1 & -2 \partial_2 - \partial_3 & 0 \\
0 & \partial_3 - \partial_1 & -2 \partial_2 - \partial_3 & 0
\end{pmatrix}.
\]

Using the \textsc{Purityfiltration} package \cite{13}, we obtain that \(M \cong E = D^{1 \times 11}/(D^{1 \times 15}) \), where \(Q \) is defined by \((32) \).

Let \(\xi = C^\infty(\mathbb{R}^3) \) be the injective \(D \)-module (see \cite{11} or Example 2.3 of \cite{12}) and let us explicitly compute \(\ker \xi(Q) \).

We first integrate the last diagonal block of \(Q \), i.e., the 0-dimensional linear PD system \(\ker \xi(R_{13}) \):
\[
\begin{align*}
-\partial_2 \tau_3 &= 0, \\
-\partial_3 \tau_3 &= 0, \\
\partial_1 \tau_3 &= 0,
\end{align*}
\]
Then, we integrate the inhomogeneous linear PD system in \(\tau_2 = (\tau_{21} \tau_{22} \tau_{23})^T \) and \(\tau_3 \), formed by the third triangular block of \(Q \), namely:
\[
\begin{align*}
\tau_{23} - \tau_3 &= 0, \\
\tau_{21} &= 0, \\
-\tau_{21} + (4 \partial_1 - \partial_3) \tau_{22} &= 0, \\
\partial_1 - \partial_2 + \partial_3 \tau_{22} + \partial_3 \tau_{23} &= 0, \\
-\partial_2 \tau_{22} &= 0, \\
\partial_1 \tau_{22} &= 0.
\end{align*}
\]
We obtain \(\tau_{21} = 0, \tau_{22} = f_1(x_3 + \frac{1}{4} (x_1 + x_2)) \), where \(f_1 \) is an arbitrary smooth function, and \(\tau_{23} = c_1, \) where \(c_1 \) is an arbitrary constant. Then, we have to integrate the inhomogeneous linear PD system in \(\tau_1 = (\tau_{11} \tau_{12} \tau_{13})^T \) and \(\tau_2 \) formed by the second triangular block of \(Q \):
\[
\begin{align*}
-2 \partial_1 \tau_{12} + \tau_{13} - \tau_{21} &= 0, \\
-\tau_{12} - \tau_{22} &= 0, \\
\tau_{11} - \tau_{12} - \tau_{23} &= 0, \\
\tau_{12} - \tau_{22} + \tau_{23} &= -f_1(x_3 + \frac{1}{4} (x_1 + x_2)), \\
\tau_{11} - \tau_{12} + \tau_{23} &= -f_1(x_3 + \frac{1}{4} (x_1 + x_2)) + c_1, \\
\tau_{13} &= -2 \partial_1 \tau_{22} + \tau_{23} = -\frac{1}{2} f_1(x_3 + \frac{1}{4} (x_1 + x_2)).
\end{align*}
\]
The entries of \(\tau_1 = (\tau_{11} \tau_{12} \tau_{13})^T \) are 1-dimensional and not 2-dimensional. This result comes from the fact that the matrix \(S'_1 \) (or \(S_1 \)) defined in Remark 2.2 admits a left inverse over \(D \), i.e., \(\text{coker} \sigma_{q1} = 0 \), which yields \(\ker \xi(S'_1) \cong \text{hom}_D(\text{coker} \sigma_{q1}, \xi) \cong \text{hom}_D(\text{coker} \gamma_{21}, \xi) = 0 \). Finally, we have to integrate the inhomogeneous linear PD system in \(\zeta = (\zeta_1 \ldots \zeta_4)^T \) and \(\tau_1 \), formed by the first triangular block of \(Q \), namely:
\[
\begin{align*}
\zeta_1 - \zeta_3 - \tau_{11} &= 0, \\
\zeta_2 + \zeta_3 - \tau_{12} &= 0, \\
(\partial_1 - 2 \partial_2 + \partial_3) \zeta_4 - \zeta_4 - \tau_{13} &= 0, \\
\zeta_1 - \zeta_2 &= -f_1(x_3 + \frac{1}{4} (x_1 + x_2)) + c_1, \\
\zeta_2 + \zeta_3 &= -f_1(x_3 + \frac{1}{4} (x_1 + x_2)), \\
(\partial_1 - 2 \partial_2 + \partial_3) \zeta_3 - \zeta_4 &= -\frac{1}{2} f_1(x_3 + \frac{1}{4} (x_1 + x_2)), \\
\zeta_1 - \zeta_2 &= -\frac{1}{2} f_1(x_3 + \frac{1}{4} (x_1 + x_2)).
\end{align*}
\]

Using the fact that \(\xi \) is an injective \(D \)-module and \(M/t(M) = D^{1 \times 4}/(D^{1 \times 3}) R_{11}' \) is a torsion-free \(D \)-module, where \(R_{11}' = \text{the matrix formed by the first 3 rows and the first 4 columns of } Q, \) \(\ker \xi(R_{11}') \) is then parametrized by \(R_{01} = (1 \ - \ -1 \ 0 \ - \ -2 \partial_2 + \partial_3)^T \), i.e., \(\ker \xi(R_{11}') = R_{01} \xi \) (see \cite{6} or 1 of Corollary 2.1 of \cite{12}). Moreover, the matrix \(R_{11}' \) admits the following right inverse
\[
X = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}.
\]
which implies that $M/t(M)$ is a projective D-module [6], and thus $M/t(M)$ is a free D-module of rank 1 by the Quillen-Suslin theorem [6, 9, 17]. Hence, Remark 14 of [16] (see also Remark 8 of [15]) proves that the general F-solution of (33) is defined by $\zeta = R_{t1} \zeta + X \tau_1$, i.e.,

$$\begin{align*}
\zeta_1 &= \xi - f_1(x_3 + \frac{1}{2} (x_1 + x_2)) + c_1, \\
\zeta_2 &= -\xi - f_1(x_3 + \frac{1}{2} (x_1 + x_2)), \\
\zeta_3 &= \xi, \\
\zeta_4 &= (\partial_1 - 2 \partial_2 + \partial_3) \xi + \frac{1}{2} f_1(x_3 + \frac{1}{2} (x_1 + x_2)),
\end{align*}$$

for all $\xi \in C^\infty(\mathbb{R}^3)$, all $f_1 \in C^\infty(\mathbb{R})$ and all $c_1 \in \mathbb{R}$. Using the D-isomorphism γ defined by (30), we finally get

$$\begin{align*}
-2 \partial_1 \eta_2 + \partial_3 \eta_3 - 2 \partial_2 \eta_2 - \partial_1 \eta_1 - \eta_4 &= 0, \\
\partial_3 \eta_2 - 2 \partial_1 \eta_2 + 2 \partial_2 \eta_2 - 3 \partial_1 \eta_1 + \eta_4 &= 0, \\
\partial_3 \eta_1 - 6 \partial_1 \eta_2 - 2 \partial_2 \eta_2 - 5 \partial_1 \eta_1 - \eta_4 &= 0, \\
\partial_2 \eta_2 - \partial_1 \eta_2 + \partial_3 \eta_3 - \partial_1 \eta_3 &= 0, \\
\partial_2 \eta_1 - \partial_1 \eta_2 - \partial_2 \eta_3 - \partial_1 \eta_3 &= 0, \\
\partial_1 \eta_1 - \partial_1 \eta_2 - 2 \partial_2 \eta_3 &= 0, \\
\eta_1 &= \xi - f_1(x_3 + \frac{1}{2} (x_1 + x_2)) + c_1, \\
\eta_2 &= -\xi - f_1(x_3 + \frac{1}{2} (x_1 + x_2)), \\
\eta_3 &= \xi, \\
\eta_4 &= (\partial_1 - 2 \partial_2 + \partial_3) \xi + \frac{1}{2} f_1(x_3 + \frac{1}{2} (x_1 + x_2)),
\end{align*}$$

where ξ (resp., f_1, c_1) is an arbitrary function of $C^\infty(\mathbb{R}^3)$ (resp., $C^\infty(\mathbb{R})$, constant).

Finally, using the regular patterns of the matrix P and of (28), we can easily generalize Theorem 2.1, Corollary 2.4 and Remark 2.2 when $\ker_D(R_3) \neq 0$, i.e., for a finitely presented left D-module $M = D^{1 \times p_0}/(D^{1 \times p_1} R_1)$ defined by a longer finite free resolution of the form:

$$0 \rightarrow M \rightarrow D^{1 \times p_0} \xrightarrow{R_1} D^{1 \times p_1} \xrightarrow{R_2} \cdots \xrightarrow{R_m} D^{1 \times p_m}.$$

If $\ker_D(R_m) = 0$, then the corresponding generalization defines the purity filtration of the left D-module M [12].

REFERENCES

