C. Hammond, H. Bergman, and P. Brown, Pathological synchronization in Parkinson's disease: networks, models and treatments, TINS special issue?Physiogenic and pathogenic oscillations: the beauty and the beast, pp.357-364, 2007.
DOI : 10.1016/j.tins.2007.05.004

A. L. Benabid, P. Pollak, C. Gervason, D. Hoffmann, D. M. Gao et al., Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, The Lancet, vol.337, issue.8738, pp.403-406, 1991.
DOI : 10.1016/0140-6736(91)91175-T

M. L. Kringelbach, N. Jenkinson, S. L. Owen, and T. Z. Aziz, Translational principles of deep brain stimulation, Nature Reviews Neuroscience, vol.62, issue.8, pp.623-635, 2007.
DOI : 10.1038/nrn2196

Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, 1984.
DOI : 10.1007/978-3-642-69689-3

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 2007.

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 2002.

G. Ermentrout, Oscillator death in populations of ???all to all??? coupled nonlinear oscillators, Physica D: Nonlinear Phenomena, vol.41, issue.2, pp.219-231, 1990.
DOI : 10.1016/0167-2789(90)90124-8

A. T. Winfree, The geometry of biological times, 1980.
DOI : 10.1007/978-3-662-22492-2

M. Rosenblum, N. Tukhlina, A. Pikovsky, and L. Cimponeriu, DELAYED FEEDBACK SUPPRESSION OF COLLECTIVE RHYTHMIC ACTIVITY IN A NEURONAL ENSEMBLE, International Journal of Bifurcation and Chaos, vol.16, issue.07, pp.1989-1999, 2006.
DOI : 10.1142/S0218127406015842

C. Hauptmann, O. Popovych, and P. A. Tass, Delayed feedback control of synchronization in locally coupled neuronal networks, Neurocomputing, vol.65, issue.66, pp.759-767, 2005.
DOI : 10.1016/j.neucom.2004.10.072

O. Popovych, C. Hauptmann, and P. Tass, DESYNCHRONIZATION AND DECOUPLING OF INTERACTING OSCILLATORS BY NONLINEAR DELAYED FEEDBACK, International Journal of Bifurcation and Chaos, vol.16, issue.07, pp.1977-1987, 2006.
DOI : 10.1142/S0218127406015830

K. Pyragas, O. Popovych, and P. Tass, Controlling synchrony in oscillatory networks with a separate stimulation-registration setup, Europhysics Letters (EPL), vol.80, issue.4, 2008.
DOI : 10.1209/0295-5075/80/40002

Y. Maistrenko, O. Popovych, and P. Tass, Desynchronization and Chaos in the Kuramoto Model, Lect. Notes Phys, vol.671, pp.285-306, 2005.
DOI : 10.1007/11360810_12

N. Tukhlina, M. Rosenblum, A. Pikovsky, and J. Kurths, Feedback suppression of neural synchrony by vanishing stimulation, Physical Review E, vol.75, issue.1, pp.11918-81, 2003.
DOI : 10.1103/PhysRevE.75.011918

A. Franci, Pathological synchronization in neuronal populations: a control theoretic perspective, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00695029

J. A. Acebrón, L. L. Bonilla, C. J. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, vol.77, issue.1, pp.137-185, 2005.
DOI : 10.1103/RevModPhys.77.137

D. Aeyels and J. A. Rogge, Existence of Partial Entrainment and Stability of Phase Locking Behavior of Coupled Oscillators, Progress of Theoretical Physics, pp.921-942, 2004.
DOI : 10.1143/PTP.112.921

A. Jadbabaie, N. Motee, and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf, pp.4296-4301, 2004.

J. L. Van-hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, Journal of Statistical Physics, vol.68, issue.108, pp.145-166, 1993.
DOI : 10.1007/BF01048044

E. Brown, P. Holmes, and J. Moehlis, Globally coupled oscillator networks, " in Perspectives and problems in nonlinear science: A celebratory volume in honor of Larry Sirovich, pp.183-215, 2003.

G. Ermentrout and N. Kopell, Oscillator Death in Systems of Coupled Neural Oscillators, SIAM Journal on Applied Mathematics, vol.50, issue.1, pp.125-146, 1990.
DOI : 10.1137/0150009

A. Franci, A. Chaillet, and W. Pasillas-lépine, Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-field feedback, Automatica, vol.47, issue.6, 2011.
DOI : 10.1016/j.automatica.2011.03.003

URL : https://hal.archives-ouvertes.fr/hal-00526066

A. L. Fradkov, Cybernetical physics. From control of chaos to quantum control, ser, 2007.
DOI : 10.1098/rsta.2016.0439

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5311443

N. Kopell and G. Ermentrout, Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators, Handbook of dynamical systems, pp.3-54, 2002.

L. Scardovi, A. Sarlette, and R. Sepulchre, Synchronization and balancing on the N-torus, Systems & Control Letters, vol.56, issue.5, pp.335-341, 2007.
DOI : 10.1016/j.sysconle.2006.10.020

N. Chopra and M. W. Spong, On Exponential Synchronization of Kuramoto Oscillators, IEEE Transactions on Automatic Control, vol.54, issue.2, pp.353-357, 2009.
DOI : 10.1109/TAC.2008.2007884

C. Assisi, V. Jirsa, and J. A. Kelso, Synchrony and Clustering in Heterogeneous Networks with Global Coupling and Parameter Dispersion, Physical Review Letters, vol.94, issue.1, 2005.
DOI : 10.1103/PhysRevLett.94.018106

R. Sepulchre, D. Paley, and N. Leonard, Stabilization of Planar Collective Motion: All-to-All Communication, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.811-824, 2007.
DOI : 10.1109/TAC.2007.898077

A. Sarlette, Geometry and symmetries in coordination control, 2009.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a universal concept in nonlinear sciences. Cambridge, United Kingdom: Cambridge Nonlinear Science Series, 2001.

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators, Proceedings of the 2010 American Control Conference, 2011.
DOI : 10.1109/ACC.2010.5530690

T. Ko and G. Ermentrout, Phase-response curves of coupled oscillators, Physical Review E, vol.79, issue.1, pp.16-211, 2009.
DOI : 10.1103/PhysRevE.79.016211

D. Cumin and C. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D: Nonlinear Phenomena, vol.226, issue.2, pp.181-196, 2007.
DOI : 10.1016/j.physd.2006.12.004

A. Franci, A. Chaillet, and W. Pasillas-lépine, Robustness of phaselocking between Kuramoto oscillators to time-varying inputs, Proc. 49th. IEEE Conf. Decision Contr, 2010.

E. Sontag, Input to state stability: Basic concepts and results, ser. Lecture Notes in Mathematics, Nonlinear and Optimal Control Theory, pp.163-220, 2006.
DOI : 10.1007/978-3-540-77653-6_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Zhang, D. Liu, and Z. Wang, Controlling Chaos: Suppression, Synchronization and Chaotification, ser. Communications and Control Engineering, 2009.
DOI : 10.1007/978-1-84882-523-9

G. Chen and L. Yang, Chaotifying a continuous-time system near a stable limit cycle, Chaos, Solitons & Fractals, vol.15, issue.2, pp.245-253, 2003.
DOI : 10.1016/S0960-0779(02)00096-6

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena, vol.143, issue.1-4, pp.1-20, 2000.
DOI : 10.1016/S0167-2789(00)00094-4

I. Blekhman, A. Fradkov, H. Nijmeijer, and A. Pogromsky, On self-synchronization and controlled synchronization, Systems & Control Letters, vol.31, issue.5, pp.299-305, 1997.
DOI : 10.1016/S0167-6911(97)00047-9

A. Franci, E. Panteley, A. Chaillet, and F. Lamnabhi-lagarrigue, Desynchronization of coupled phase oscillators, with application to the Kuramoto system under mean-field feedback, IEEE Conference on Decision and Control and European Control Conference, 2011.
DOI : 10.1109/CDC.2011.6161377

URL : https://hal.archives-ouvertes.fr/hal-00652625

A. Franci, A. Chaillet, and S. Bezzaoucha, Toward oscillations inhibition by mean-field feedback in Kuramoto oscillators, To appear in Proc. IEEE Conf. on Decision and Control, 2011.
DOI : 10.3182/20110828-6-IT-1002.02170