Hybrid Lower Bound On The MSE Based On The Barankin And Weiss-Weinstein Bounds
Chengfang Ren, Jérôme Galy, Eric Chaumette, Pascal Larzabal, Alexandre Renaux

To cite this version:

HAL Id: hal-00800214
https://hal-supelec.archives-ouvertes.fr/hal-00800214
Submitted on 13 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HYBRID LOWER BOUND ON THE MSE BASED ON THE BARANKIN AND WEISS-WEINSTEIN BOUNDS

Chengfang Ren (1), Jerome Galy (2), Eric Chaumette (3,4), Pascal Larzabal (4) and Alexandre Renaux (1)

(1) Universite Paris-Sud/LSS
3, Rue Joliot-Curie, 91192 Gif-sur-Yvette, France. Emails: cren@lss.supelec.fr, renaux@lss.supelec.fr
(2) Universite de Montpellier 2/LIRMM
161 rue Ada 34392 Montpellier Cedex 5, France. Email: galy@lirmm.fr
(3) ONERA/The French Aerospace Lab
Chemin de la Huniere Palaiseau Cedex 91123, France. Email: eric.chaumette@onera.fr
(4) Ecole Normale de Cachan/SATIE
61 av. du President Wilson, 94235 Cachan cedex, France. Email: pascal.larzabal@satie.ens-cachan.fr

ABSTRACT
This article investigates hybrid lower bounds in order to predict the estimators mean square error threshold effect. A tractable and computationally efficient form is derived. This form combines the Barankin and the Weiss-Weinstein bounds. This bound is applied to a frequency estimation problem for which a closed-form expression is provided. A comparison with results on the hybrid Barankin bound shows the superiority of this new bound to predict the mean square error threshold.

Index Terms— Parameter estimation, hybrid bounds, SNR threshold

1. INTRODUCTION
In estimation theory, the quality of an estimator is generally measured by its Mean-Squared Error (MSE). In order to quantify its ultimate performance, the MSE is compared to the so-called lower bounds which are independent of estimation technique. Among these bounds, one of the most famous is the Cramér-Rao Bound (CRB) [1][2] due to its easy computation. However, when the observation model is not linear with respect to the parameters to estimate, it is well known that a Signal-to-Noise Ratio (SNR) threshold occurs ([3] p. 273) i.e. large estimation errors appear. Consequently, the knowledge of this particular value for which this threshold appears is fundamental. Unfortunately, the CRB cannot predict this SNR threshold. This is why lower bounds tighter than the CRB have been proposed in the literature. Among these bounds, we distinguish the so-called deterministic lower bounds where the parameters to estimate are assumed to be deterministic unknown e.g. [4][5][6][7][8] and Bayesian lower bounds where the parameters to estimate are assumed to be random with a known a priori Probability Density Function (PDF) e.g. [9][10][11][12][13]. All these bounds have already been successfully applied to various signal processing applications [14].

A third family of lower bounds on the MSE called hybrid lower bounds are used to bound the MSE of any estimator which simultaneously estimates both deterministic parameters and random parameters from observations. Indeed, such parametric estimation problems often appear in the literature, for example, the Gaussian generalized linear model [15]. Historically, the first hybrid bound called Hybrid Cramér-Rao Bound (HCRB) has been introduced in 1987 by Rockah and Schultheiss in the context of array shape calibration [16]. Another proof of the HCRB can also be found in [17]. Then, [18] have proposed in 1997 the so-called Hybrid Barankin Bound (HBB) or Reuven-Messer bound and have applied this bound for time-delay estimation in radar signal. Note that, as the classical CRB and Bayesian CRB, the HCRB cannot predict the threshold effect while the HBB does. Recently, [19] have proved three theorems giving necessary and sufficient conditions on the asymptotic achievability of the HCRB. A slight extension of the HCRB where the a priori PDF of the random parameters depends on deterministic parameters has been proposed in [20] and applied to phase estimation in binary phase-shift keying transmission in a non-data-aided context. Finally, a new class of hybrid bound via compression of the sampled centered likelihood-ratio function has been proposed and applied in a frequency estimation context in [21]. Among these aforementioned theoretical results, hybrid lower bounds have been shown to be useful in many applications e.g. refractivity estimation using clutter from sea surface [22], parameters estimation in long-code DS/CDMA systems [23], bearing estimation for deformed towed arrays in the fluid mechanics context [24].

In this paper, we propose a new hybrid lower bound which is based on the Chapman-Robbins bound (a practical approximation of the Barankin bound) for the deterministic parameter and on the Weiss-Weinstein bound for the random parameter. Our motivation comes from the fact that, among the Bayesian bounds, the Weiss-Weinstein bound is known to be one of the tightest [25]. So, one can expect that the combination of these bounds will lead to a bound tighter than the HBB. The proof is based on the covariance matrix inequality [26]. Particularly, we detail the underlying assumptions on the class of estimators for which the proposed bound can be applied. Last, we give a closed-form expression in a signal processing application with simulation results where a comparison with the Maxi-
3. Hybrid Lower Bounds

3.2. New hybrid lower bound based on the Barankin and Weiss-Weinstein bounds

3.2.1. Notations and assumptions

For sake of simplicity, we restrict our analysis to the case of a single deterministic parameter and a single random parameter. Consequently, \(\theta = (\theta_d, \theta_r)^T \). The multivariate case is cumbersome but straightforward [27]. Regarding the test-points, let us define \(h_1 = (h_{d1} h_{r1})^T \) and \(h_2 = (0 h_{r2})^T \). Note the fact that the first entry of \(h_2 \) is equal to 0 is a necessary condition to derive the bound what will be justified in the sequel.

In addition, we have the following assumptions:

1) \(\forall \theta_r \in \Pi_r, f(X, \theta_r; \theta_d) = 0 \Rightarrow f(X, \theta_r + h_r; \theta_d + h_d) = 0 \).

2) \(\forall \theta_d \in \Pi_d, \mathbb{E}_{X|\theta_d} [\theta_d] = \theta_d, \mathbb{E}_{X|\theta_d} [\theta_r] = \theta_d + h_d. \)

3) \(\forall \theta_d \in \Pi_d, \mathbb{E}_{X, \theta_d} [\theta_r - (\theta_r + h_r)] = 0. \)

Remark: assumption 1 means that the random parameter support cannot be a compact interval; for example the proposed bound does not apply for an uniform prior (as the HBB).

3.2.2. The proposed bound

Let us set \(v(X, \theta) = (v_d(X, \theta), v_r(X, \theta))^T \). We propose to use

\[
v_d(X, \theta) = \begin{cases} \frac{f(X, \theta + h_d)}{f(X, \theta)} - 1 & \text{if } \theta \in \Theta, \\ 0 & \text{else} \end{cases}
\]

\[
v_r(X, \theta) = \begin{cases} \frac{f(m(X, \theta + h_d))}{f(m(X, \theta))} - \frac{1 - m(X, \theta + h_d)}{1 - m(X, \theta)} & \text{if } \theta \in \Theta, \\ 0 & \text{else} \end{cases}
\]

where \(0 < m < 1 \). Note that:

- \(v_r(X, \theta) \rightarrow \frac{f(m(X, \theta + h_d))}{f(m(X, \theta))} - 1, \) which is the choice of \(v(X, \theta) \) leading to a particular HBB with two test-points.
- If the problem is reduced to random parameter only \(i.e. \theta = \theta_r \) and \(v(X, \theta) = v_r(X, \theta), \) then Eqn. (1) reduces to the Bayesian Weiss-Weinstein Bound (12 Eqn. (19)).

In this case, plugging Eqn. (4) and (5) in Eqn. (2) and (3) will lead to the proposed hybrid lower bound on the MSE. Straightforwardly the elements of matrix \(V \) are given by

\[
\{ V \}_{1,1} = \mu(2, h_1) - 1,
\]

\[
\{ V \}_{2,2} = \mu(2m, h_2) + \mu(2 - 2m, -h_2) - 2\mu(m, 2h_2),
\]

and

\[
\{ V \}_{1,2} = \{ V \}_{2,1} = \eta(m, h_1, h_2) - \eta(1 - m, h_1, -h_2) - \mu(m, h_2) + \mu(1 - m, -h_2),
\]

where

\[
\eta(\mu, h) = \mathbb{E}_{X, \theta} \left[\frac{f(m(X, \theta + h))}{f(m(X, \theta))} \right] - \frac{1 - m(X, \theta + h)}{1 - m(X, \theta)}.
\]

Concerning the elements of matrix \(C \), one has to prove that they are independent of \(\theta \) in order to obtain a lower bound independent of the estimation scheme. After calculations detailed on Appendix, one obtains

\[
\{ C \}_{1,1} = h_{d1}^2, \{ C \}_{2,1} = h_{r1}, \{ C \}_{1,2} = 0,
\]

and

\[
\{ C \}_{2,2} = h_{r2}\mu(m, h_2).
\]

Finally, the lower bound is given by

\[
\max_{h_1 \in \Pi_d \times \Pi_r, h_2 \in (0) \times \Pi_r, 0 < m < 1} \left\{ CV^{-1}C^T \right\}.
\]
4. APPLICATION AND SIMULATION

4.1. Example of application

We consider the frequency estimation problem given in [21], where the observation model is:

\[x = s e^{j \varphi} b(\omega) + n, \tag{14} \]

and \(x \in \mathbb{C}^P \) is the observation vector, \(b(\omega) = \left[1, e^{j \omega}, \ldots, e^{j (P-1) \omega} \right]^T \) is a normalized cisoid signal and the noise \(n \) is assumed to be complex Gaussian circular centred with covariance matrix \(\sigma_n^2 I \).

We assume that the phase \(\varphi \in [-\pi; \pi] \) is known, the amplitude \(s \in \mathbb{R}^+ \) is a deterministic unknown parameter and the frequency \(\omega \) is a random unknown parameter with a \textit{a priori} Gaussian centred with variance \(\sigma_\omega^2 \). Therefore the unknown vector of parameters to estimate is \(\theta = [s \ \omega]^T \).

The empirical MSE of the MAPMLE is assessed with 1000 Monte-Carlo trials.

Concerning the element \(\{C\}_{1,1} \), we have

\[\{C\}_{1,1} = \mathbb{E}_{X, \theta} \left[(\hat{\theta}_d - \theta_d) v_d (X, \theta) \right] \]

\[= \int \int_{\Omega_d} \left(\frac{f(X, \theta + h_1)}{f(X, \theta)} - 1 \right) f(X, \theta) \, dX \, d\theta, \tag{19} \]

By using assumption 2, one obtains

\[\int_{\Omega_d} (\hat{\theta}_d - \theta_d) f(X | \theta; \theta_d) \, dX = 0, \tag{20} \]

and

\[\int_{\Omega_d} (\hat{\theta}_d - (\theta_d + h_{1d})) f(X | \theta; \theta_d + h_{1d}) \, dX = 0, \tag{21} \]

5. CONCLUSION

In this paper, a hybrid lower bound on the mean square error based on the Barankin bound and on the Weiss-Weinstein bound has been developed. This bound can be applied to the same class of estimators as the hybrid Barankin bound but exhibits a better SNR threshold prediction.

6. APPENDIX

The empirical MSE of the MAPMLE is assessed with 1000 Monte-Carlo trials.

Since in our application case the observation model is linear in \(s \) and non linear in \(\omega \), we only plot on the figure (1) the HCRB, the HBB, and the empirical MSE of the MAPMLE for the random parameter \(\omega \) which is the only one to exhibit a SNR threshold phenomenon.
Thus, plugging Eqn. (20) and (21) in Eqn. (19), we have

\[
(C)_{1,1} = h_{1d} \int_{\Omega} f(\theta_r + h_{1r}) d\theta_r = h_{1d}.
\]

(22)

Regarding the element \((C)_{2,1}\), we have

\[
(C)_{2,1} = \mathbb{E}_{X, \theta} \left[\left(\hat{\theta}_r - \theta_r \right) v_r(X, \theta) \right]
= \int \int \left(\hat{\theta}_r - \theta_r \right) \left(\frac{f_{m}(X, \theta + h_{1r})}{f_{m}(X, \theta)} - 1 \right) f(X, \theta) dX d\theta_r
= \left(\int \int \left(\hat{\theta}_r - \theta_r \right) f(X, \theta + h_{1r}) dX d\theta_r
- \int \int \left(\hat{\theta}_r - \theta_r \right) f(X, \theta) dX d\theta_r \right)
\]

(23)

By using the assumption 3, one obtains

\[
\int \int_{\Omega} \left(\hat{\theta}_r - \theta_r \right) f(X, \theta) dX d\theta_r = 0
\]

(24)

and

\[
\int \int_{\Omega} \left(\hat{\theta}_r - \theta_r \right) f(X, \theta + h_{1r}) dX d\theta_r = 0.
\]

(25)

Now, concerning \((C)_{1,2}\), one has

\[
(C)_{1,2} = \mathbb{E}_{X, \theta} \left[\left(\hat{\theta}_d - \theta_d \right) v_r(X, \theta) \right]
= \int \int \left(\hat{\theta}_d - \theta_d \right) \left(\frac{f_{m}(X, \theta + h_{1d})}{f_{m}(X, \theta)} - 1 \right) f(X, \theta) dX d\theta_d
= 0.
\]

(30)

Remark:
- This result is an extension of Eqn. (1) in [12] when the joint PDF depends on \(\theta_d\).
- If we chose \(h = (h_d, h_r)\) with \(h_d \neq 0\) in this preliminary result, then Eqn. (30) would depend on \(X\). Consequently, we would find that \((C)_{1,2}\) and \((C)_{2,2}\) would depend on \(\theta\).

Now, concerning \((C)_{2,2}\), one has

\[
(C)_{2,2} = \mathbb{E}_{X, \theta} \left[\left(\hat{\theta}_r - \theta_r \right) v_r(X, \theta) \right]
= \int \int \left(\hat{\theta}_r - \theta_r \right) \left(\frac{f_{m}(X, \theta + h_{2r})}{f_{m}(X, \theta)} - 1 \right) f(X, \theta) dX d\theta_r
= \int \int \theta_r \left(\frac{f_{m}(X, \theta + h_{2r})}{f_{m}(X, \theta)} - 1 \right) f(X, \theta) d\theta_r dX.
\]

(31)

by using Eqn. (30) with \(g(X, \theta_d) = \hat{\theta}_d - \theta_d\). Let us study

\[
\int \int_{\Omega} \theta_r f_{m-1}(X, \theta - h_{2r}) f_{m}(X, \theta) d\theta_r =
\int \int \theta_r f_{m-1}(X, \theta_r - h_{2r}; \theta_d) f_{m}(X, \theta_r; \theta_d) d\theta_r.
\]

(32)

By substitution \(\theta_r = \theta_r - h_{2r}\), the integer space for \(\theta_r\) is still \(\Omega\), by assumption 1 and we have

\[
\int \int_{\Omega} \theta_r f_{m-1}(X, \theta - h_{2r}) f_{m}(X, \theta) d\theta_r
= \int \int \left(\theta_r + h_{2r} \right) f_{m-1}(X, \theta_r; \theta_d) f_{m}(X, \theta_r + h_{2r}; \theta_d) d\theta_r'
= \int \int \theta_r f_{m-1}(X, \theta_r + h_{2r}; \theta_d) f_{m}(X, \theta_r; \theta_d) d\theta_r'
+ h_{2r} \int \int f_{m}(X, \theta_r + h_{2r}; \theta_d) f_{m-1}(X, \theta_r; \theta_d) d\theta_r'.
\]

(33)

Thus, plugging Eqn. (33) in (31), one has

\[
(C)_{2,2} = h_{2r} \mathbb{E}_{X, \theta} \left[\frac{f_{m}(X, \theta + h_{2r})}{f_{m}(X, \theta)} \right].
\]

(34)
7. REFERENCES

