Reinforcement learning for microgrid energy management

Abstract : We consider a microgrid for energy distribution, with a local consumer, a renewable generator (wind turbine) and a storage facility (battery), connected to the external grid via a transformer. We propose a 2 steps-ahead reinforcement learning algorithm to plan the battery scheduling, which plays a key role in the achievement of the consumer goals. The underlying framework is one of multi-criteria decision-making by an individual consumer who has the goals of increasing the utilization rate of the battery during high electricity demand (so as to decrease the electricity purchase from the external grid) and increasing the utilization rate of the wind turbine for local use (so as to increase the consumer independence from the external grid). Predictions of available wind power feed the reinforcement learning algorithm for selecting the optimal battery scheduling actions. The embedded learning mechanism allows to enhance the consumer knowledge about the optimal actions for battery scheduling under different time-dependent environmental conditions. The developed framework gives the capability to intelligent consumers to learn the stochastic environment and make use of the experience to select optimal energy management actions.
Complete list of metadatas

https://hal-supelec.archives-ouvertes.fr/hal-00828024
Contributor : Yanfu Li <>
Submitted on : Thursday, May 30, 2013 - 10:39:21 AM
Last modification on : Wednesday, June 26, 2019 - 3:02:29 PM

Identifiers

  • HAL Id : hal-00828024, version 1

Citation

Elizaveta Kuznetsova, Yan-Fu Li, Carlos Ruiz, Enrico Zio, Keith Bell, et al.. Reinforcement learning for microgrid energy management. Energy, Elsevier, 2013, accepted for publication. ⟨hal-00828024⟩

Share

Metrics

Record views

682