Fluctuations of spiked random matrix models and failure diagnosis in sensor networks

Abstract : In this paper, the joint fluctuations of the extreme eigenvalues and eigenvectors of a large dimensional sample covariance matrix are analyzed when the associated population covariance matrix is a finite-rank perturbation of the identity matrix, corresponding to the so-called spiked model in random matrix theory. The asymptotic fluctuations, as the matrix size grows large, are shown to be intimately linked with matrices from the Gaussian unitary ensemble. When the spiked population eigenvalues have unit multiplicity, the fluctuations follow a central limit theorem. This result is used to develop an original framework for the detection and diagnosis of local failures in large sensor networks, for known or unknown failure magnitude.
Complete list of metadatas

https://hal-supelec.archives-ouvertes.fr/hal-00830228
Contributor : Catherine Magnet <>
Submitted on : Tuesday, June 4, 2013 - 3:43:24 PM
Last modification on : Wednesday, February 20, 2019 - 2:38:53 PM

Identifiers

Citation

Romain Couillet, Walid Hachem. Fluctuations of spiked random matrix models and failure diagnosis in sensor networks. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2013, 59 (1), pp.509-525. ⟨10.1109/TIT.2012.2218572⟩. ⟨hal-00830228⟩

Share

Metrics

Record views

161