Recent results on wheel slip control: Hybrid and continuous algorithms
William Pasillas-Lépine

To cite this version:
William Pasillas-Lépine. Recent results on wheel slip control: Hybrid and continuous algorithms. TU Delft’s DCSC Mini-symposium on Automotive control, Mar 2011, Delft, Netherlands. hal-00832532

HAL Id: hal-00832532
https://hal-supelec.archives-ouvertes.fr/hal-00832532
Submitted on 10 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Recent results on wheel slip control: Hybrid and continuous algorithms

William PASILLAS-LÉPINE
Laboratoire des signaux et systèmes
CNRS — Supélec, Gif-sur-Yvette
pasillas@lss.supelec.fr

Collaboration with
Mathieu Gerard (TU Delft), Edwin de Vries (TU Delft), and Antonio Loria (L2S)
Contents of the talk

- Two main families of ABS algorithms
- Why doing research on ABS today?
- Other recent approaches
- Continuous wheel slip control algorithms
- Experimental results
- Hybrid five-phase ABS algorithms
- Experimental results
- Conclusions and future work perspectives
- Publications
Why do we want to control wheel slip?

Tyre forces are generated by the wheel slip in the contact patch:

$$\lambda = \frac{R\omega - v_x}{v_x}.$$

They have a nonlinear characteristics with a coupling between longitudinal and lateral forces. Controlling the wheel-slip improves safety: it reduces the braking distance and maintains steerability.
Two main families of ABS algorithms

Algorithms based on wheel slip control:

- it is supposed (implicitly) that vehicle speed is measured (or estimated);
- the brake torque converges to a specific value (no oscillations);
- mainly present in an academic context...
- and in specific applications (ESP, motorcycles, tyre research).

Algorithms based on angular acceleration thresholds:

- do not need the vehicle speed, neither the value of optimal wheel slip;
- quite robust with respect to road conditions and tyre parameters;
- the brake torque oscillates around the optimal value (limit cycle);
• mainly present in an *industrial* context;

• widely diffused on actual vehicles, but completely heuristic.
Why doing research on ABS today?

Integrated chassis control:

- black box algorithms are difficult to integrate;
- open algorithms might clarify the architecture of ICC;
- decoupling the observation problem (for vehicle speed) from control.

Electric vehicles, In-wheel motors, EMB:

- standard ABS algorithms are not adapted to regenerative braking (Toyota Prius);
- these heuristic algorithms need the hydraulic lag in order to work properly...
- they loose performance or do not work at all with electric actuators.

Fault management:

- useful to have algorithms with a stability proof.
Comparison of our work with other approaches

- Exponential stability in both the stable and unstable tyre domains — Tanelli et al. Robust nonlinear output feedback control for brake by wire control systems. *Automatica*, 2008.

- Other hybrid approaches that use only wheel acceleration information (Bosch) are based on heuristics, we propose a method based on the analysis of limit cycles.
Wheel dynamics

The angular velocity ω of a given wheel of the vehicle has the following dynamics:

$$I \dot{\omega} = -RF_x + T,$$

where I denotes the inertia of the wheel, R its radius, F_x the longitudinal tyre force, and T the torque applied to the wheel.

The torque $T = T_e - T_b$ is composed of the engine torque T_e and the brake torque T_b.
Tyre force modelling

The longitudinal tyre force F_x is often modeled as a function

$$F_x = \mu(\lambda) F_z,$$

of the wheel’s slip

$$\lambda = \frac{R\omega - v_x}{v_x}.$$

The curve $\mu(\cdot)$ can be approximated by a second order rational function

$$\mu(\lambda) = \frac{a_1 \lambda - a_2 \lambda^2}{1 - a_3 \lambda + a_4 \lambda^2}.$$
Experimental validation

Wheel slip [-] Tyre characteristics [-]

- Experimental ABS braking
- Second order rational fraction

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France) DCSC 2011, Delft (The Netherlands)
Wheel slip and acceleration offsets

Define the variables x_1 and x_2 by

$$
x_1(t) = \lambda(t)
$$

$$
x_2(t) = R \frac{d\omega(t)}{dt} - a_x(t),
$$

where $a_x(t)$ is the vehicle’s acceleration. Derivating these variables we obtain:

$$
\frac{dx_1}{dt} = \frac{1}{v_x(t)} (-a_x(t)x_1 + x_2)
$$

$$
\frac{dx_2}{dt} = -\frac{c\mu'(x_1)}{v_x(t)} (-a_x(t)x_1 + x_2) + \frac{u}{v_x(t)} - \frac{da_x(t)}{dt},
$$

where

$$
c = \frac{R^2}{I} F_z \quad \text{and} \quad u = v_x(t) \frac{R}{I} \frac{dT}{dt}.
$$
Wheel-slip filtered setpoint

For a given wheel-slip reference $\lambda^*(t)$, we will define a filtered setpoint

$$\frac{d\lambda_1}{dt} = \frac{\lambda_2}{v_x(t)}$$

$$\frac{d\lambda_2}{dt} = -\gamma_1 (\lambda_1 - \lambda^*) - \gamma_2 \lambda_2 \frac{v_x(t)}{v_x(t)},$$

where γ_1 and γ_2 are two positive real numbers.

This setpoint filter gives:

- A smooth reference setpoint (that one can differentiate twice) even if the original setpoint is discontinuous (for example, piecewise constant).

- A system for which all equations are divided by the vehicle’s velocity. This homogeneity allows an analysis of the system in a new (nonlinear) time-scale in which
the dependence on speed disappears.
Changing the time-scale

In order to have $dt = v_x(t)ds$, we will use a new time-scale

$$s(t) = \int_0^t \frac{d\tau}{v_x(\tau)}.$$

We use a dot to denote the new time-derivative

$$\dot{\varphi}(s) = \frac{d\varphi(s)}{ds}.$$

When the acceleration a_x is constant, in the new time-scale the system is simpler:

$$\begin{align*}
\dot{x}_1 &= -a_x x_1 + x_2 \\
\dot{x}_2 &= -c\mu'(x_1)(-a_x x_1 + x_2) + u \\
\dot{\lambda}_1 &= \lambda_2 \\
\dot{\lambda}_2 &= -\gamma_1(\lambda_1 - \lambda^*) - \gamma_2 \lambda_2.
\end{align*}$$

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France)

DCSC 2011, Delft (The Netherlands)
Choice of the operating point

Let $x_1^* = \lambda_1$ be the desired operating point for x_1. Define the error coordinates by

$$
\begin{align*}
 z_1 &= x_1 - x_1^* \\
 z_2 &= x_2 - x_2^*,
\end{align*}
$$

where

$$
x_2^* = \lambda_2 + a_x x_1 - \alpha z_1 \quad \text{and} \quad \alpha > 0.
$$

The closed-loop equation for z_1 reads

$$
\dot{z}_1 = -\alpha z_1 + z_2,
$$

which is exponentially stable if $z_2 = 0$. The objective is thus to design a control u such that x_2 converges towards x_2^* asymptotically.
Our cascaded control law

Driving x_2 towards the dynamic setpoint

$$x_2^* = a_x x_1 + \lambda_2 - \alpha z_1$$

is achieved using the control law

$$u = -\gamma_1 (\lambda_1 - \lambda^*) + (-\gamma_2 + a_x + a\mu'(x_1)) \lambda_2 - k_1 z_1 - k_2 z_2.$$

The dynamic setpoint x_2^* is the core of the cascade:

- The steady state is $a_x x_1$.
- Other terms to reduce error z_1 using cascaded feedback $(-\alpha z_1)$ and cascaded feedforward (λ_2).
Global exponential stability

Theorem 1 Consider an arbitrary piecewise-continuous wheel slip reference \(\lambda^*(t) \).

If \(\lambda^*(t) \) is injected into the filtered setpoint equations and the control law

\[
u = -\gamma_1(\lambda_1 - \lambda^*) + (-\gamma_2 + a_x + c\mu'(x_1)) \lambda_2 - k_1 z_1 - k_2 z_2
\]

is introduced into the system, then a time-varying closed-loop system

\[
\dot{z} = \begin{bmatrix}
-\alpha & 1 \\
-k_1 + a_x \alpha - \alpha^2 + \alpha \eta(t) & -k_2 + \alpha - a_x - \eta(t)
\end{bmatrix} z,
\]

is obtained. If the control gains \(k_1 \) and \(k_2 \) satisfy

\[
k_1 > a_x \alpha - \alpha^2 \quad \text{and} \quad k_2 > \alpha - a_x + \eta_m
\]

then the origin of this closed loop system is globally exponentially stable.
Robustness

Corollary 1 Consider a constant wheel slip reference λ^*. If λ^* is injected into the filtered setpoint equations and the control law

$$u = -\gamma_1 (\lambda_1 - \lambda^*) + (-\gamma_2 + a_x + c\hat{\mu}'(x_1)) \lambda_2 - k_1 z_1 - k_2 z_2$$

is introduced into the system, then a time-varying closed-loop system

$$\dot{z} = A(t) z + B(t) w \quad \dot{w} = C(t) w$$

is obtained, with the same matrix $A(t)$ as in Theorem 1, and $w = (\lambda_1 - \lambda^*, \lambda_2)$. If the control gains k_1 and k_2 satisfy the bounds

$$k_1 > a_x \alpha - \alpha^2 \quad \text{and} \quad k_2 > \alpha - a_x + \eta_m$$

of Theorem 1, then the closed loop system is globally exponentially stable.
Simulations — Pure feedforward control

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France)
DCSC 2011, Delft (The Netherlands)
Simulations — Pure feedback control

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France)

DCSC 2011, Delft (The Netherlands)
Simulations — With both feedback and feedforward control
Simulations — With a delay of 15 ms
Simulations — With a perturbation of $\mu(\cdot)$
TU Delft’s Tyre Setup

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France)
DCSC 2011, Delft (The Netherlands)
Experimental validation, with Mathieu Gerard (TU Delft)
Experimental validation, with Mathieu Gerard (TU Delft)
Hybrid five-phase algorithms (WPL – VSD 2006)

\[\dot{P}_b = -\frac{u_1}{R\omega} \]

1. \(x_2 < 0 \) and \(x_1 < 0 \)

2. \(x_2 \geq \epsilon_1 \)

3. \(x_2 \geq \epsilon_2 \)

4. \(x_2 \leq \epsilon_3 \)

5. \(x_2 \leq -\epsilon_4 \)

\[\dot{P}_b = -\frac{u_5 x_2}{R\omega} \]

\[\dot{P}_b = \frac{u_4}{R\omega} \]

\[\dot{P}_b = 0 \]

\[\dot{P}_b = \frac{u_3}{R\omega} \]
A method based on first integrals

\[I_a(x) = x_2 + a \mu(x_1) \]
\[I_b(x) = x_1 - \frac{1}{2 u_0} x_2^2 \]
\[I_c(x) = x_2 + a \mu(x_1) - u_0 x_1 \]
Simulation

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France)
DCSC 2011, Delft (The Netherlands)
Experimental validation, with Mathieu Gerard (TU Delft)
Experimental validation, with Mathieu Gerard (TU Delft)

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France) DCSC 2011, Delft (The Netherlands)
Experimental validation, with Mathieu Gerard (TU Delft)
Conclusion

- We proposed a new cascaded wheel slip controller.
- It uses a feedforward to speed up convergence, but a perfect knowledge of the tyre is not required (the feedback part does not use it).
- It leads to a proof of global exponential stability of the closed-loop system.
- Robust to practical phenomena (delays, relaxation length, tyre parameters).
- Validated experimentally with a tyre in-the-loop, by Mathieu Gerard (TU Delft).

Perspectives

- A controller that takes into account actuation delays is currently developed.
- The algorithms for computing angular wheel acceleration need to be improved.
Publications

W. Pasillas-Lépine (CNRS, Gif-sur-Yvette, France) DCSC 2011, Delft (The Netherlands)