An RF BIST Architecture for Output Stages of Multistandard Radios
Emanuel Dogaru, Filipe Vinci dos Santos, William Rebernak

To cite this version:

HAL Id: hal-00839333
https://hal-supelec.archives-ouvertes.fr/hal-00839333
Submitted on 28 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An RF BIST Architecture for Output Stages of Multistandard Radios

Emanuel Dogaru*†, Filipe Vinci dos Santos* and William Rebernak†

*Thales Chair on Advanced Analog Design, SUPELEC
Gif-sur-Yvette, France
Email: filipe.vinci@supelec.fr
†THALES Communications & Security
Gennevilliers, France

Abstract—Software defined radios (SDR) platforms are increasingly complex systems which combine great flexibility and high performance. These two characteristics, together with highly integrated architectures make production test a challenging task. In this paper, we introduce an Radio Frequency (RF) Built-in Self-Test (BIST) strategy based on Periodically Nonuniform Sampling of the signal at the output stages of multistandard radios. We leverage the I/Q ADC channels and the DSP resources to extract the bandpass waveform at the output of the power amplifier (PA). Analytical expressions and simulations show that our time-interleaved conversion scheme is sensitive to time-skew. We show a time-skew estimation technique that allows us to surmount this obstacle. Simulation results show that we can effectively reconstruct the bandpass signal of the output stage using this efficient mapping to hardware of our new time-skew estimation technique that allows us to surmount this obstacle.

Keywords—BIST, Periodically nonuniform sampling, software radio, SDR, mixed-signal test, undersampling

I. INTRODUCTION

The unabated improvement in speed and integration density of integrated circuits (IC) has made possible the Software Defined Radio concept proposed by Mitola [1]. An SDR is a Radio in which some (or all) of the physical layer functions are programmable. These architectures are well suited to the requirements of the defense sector (secure mobile communication terminals). The outstanding flexibility and performance of these radios result from careful trade-offs among advanced analog/RF circuitry, high-speed reconfigurable digital hardware and sophisticated real-time software. However, the inherent adaptability of these multistandard platforms hinders the testability of the finished units. Established mixed-signal and RF test strategy are either too time-consuming (thus costly) or can’t ensure compliance with several modulations standards, including those yet to appear. Unlike conventional transmitters, SDR platforms must satisfy strict requirements under a wide variety of operating modes. New test strategies must be invented, able to cover thoroughly and efficiently all key specifications of the radio unit.

Over the past few years, analog and mixed-signal test and testability has been a subject of intense research. Traditional production testing of transceivers relies on specialized machines, known as Automatic Test Equipment (ATE) units. These machines are very expensive and hard to master. These shortcomings gave incentives to continuing research efforts for cost effective alternatives.

One such alternative, borrowed from digital testing research, is the idea of introducing Built-In Self-Test (BIST) techniques that eliminate or reduce the need for external instrumentation. Analog and mixed-signal (AMS) BIST techniques generally entail additional circuitry and reuse of resources available (DSP, converters, memory).

Several AMS BIST techniques targeting specifically RF transceivers (RF BIST) have been proposed. RF BIST strategies generally try to avoid to route RF signals from or to external equipment. The loopback approach is one of the most cited RF BIST technique (see [4], [5], [6], [7], [8]). In a nutshell, RF loopback consists in using the transmitting part (Tx) to excite some parts or all of the receiver (Rx). The key idea is to add components that allow the reconfiguration of the on-board (or on-chip) resources to carry out some type of characterization.

Loopback BIST is an attractive proposition, although it has two major drawbacks. The first one is fault masking, a situation where a (non-catastrophic) failure of the Tx is covered up by an exceptionally good Rx, or the inverse. A marginal product could then go undetected (test escapes). The second drawback of BIST loopback is that it is not applicable directly to all transceivers architectures (e.g. [9]). In spite of its shortcomings, loopback BIST has been often implemented and reported as effective: [4], [5], [10], [6], [8], [7]. The large number of publications shows the continuing interest in the topic.

From the point of view of SDR platforms, a common shortcoming of all RF BIST proposals is that they are tied to a specific operating condition (frequency, modulation, standard, etc.), and cannot adapt to the wide range of operating modes of tactical radio units. In this paper we introduce a loopback BIST technique that overcomes this limitation.

The aim of our work is to reduce post-manufacture test cost of SDR transceivers by leveraging the reconfigurability of the platform. We are exploring the use of nonuniform sampling (undersampling) to carry out bandpass AD conversion of the PA signal, using I/Q channel ADCs as a single time-interleaved ADCs (see Fig. 1). Our initial efforts are focused to the...
characterization of the transmitter (Tx) chain with respect to compliance to the spectral mask. The bandpass measurements of the output stage waveforms using nonuniform sampling allow us to surmount the most vexing post-manufacture testing issue for tactical radio units. Our approach is scalable across a wide range of complex specifications without incurring additional hardware or performance cost. As presented in this paper, the technique we propose is more suitable for offline utilization.

This paper gives a detailed description of our bandpass nonuniform sampling architecture. First, we describe the mathematical basis for the technique, and give theoretical results suggesting its feasibility. We show then that the implementation requirements can be met with a reasonable margin without affecting the robustness of signal reconstruction. The most critical requirement is shown to be the time-skew between channels. The feasibility of using time-skew measurement techniques commonly applied for Time-Interleaved ADCs (TIADCs) is analyzed, and experiments are conducted with a typical configuration. The results obtained during simulations are promising, pushing us to advance to a hardware implementation.

To confirm the results of our mathematical analysis we built a behavioral model of a homodyne transmitter and ran extensive simulations. We choose to use Matlab, and later SystemC-AMS, in order to obtain highly accurate results while handling disparate time constants, within reasonable simulation times. Our simulations show that the time-skew is indeed critical to our approach, and that it can be estimated to the required level by well known techniques.

The remainder of this paper is organized as follows. Section II introduces the mathematical theory behind the periodic nonuniform sampling technique and motivates our choice. Section III describes a practical realization of the nonuniform sampler that uses a modified time-interleaved ADC, and discusses the obstacles found. Section IV provides a time-skew detection technique that improves BP-TIADC performances.

Section V shows the results obtained in simulation. Finally, our conclusions and future developments are given in Section VI.

II. THEORETICAL BACKGROUND

It is well known that a continuous time signal \(f(t) \) with Fourier transform \(F(\nu) \), limited to a non-zero frequency range \(|\nu| < B \) can be reconstructed from its samples \(f(nT/2) \), where \(T = 1/B \). This technique is well known as Nyquist.

It has also been demonstrated in [11], [12] that if \(F(\nu) \) is limited to a frequency range \(f_{\text{L}} < |\nu| < f_{\text{H}} + B \) (see Fig. 2), then \(f(t) \) can also be reconstructed from a set of uniformly spaced samples \(f(nT/2) \), as long as the ratio \(f_{\text{H}}/f_{\text{L}} \) is a positive ratios integer. This sampling scheme is called Periodically Bandpass Sampling of First Order (PBS) or Uniform Bandpass Sampling. If the previous requirements and band locations are not met, Kohlenberg [12] showed that \(f(t) \) can still be reconstructed from two sets of uniform samples \(f(nT) \) and \(f(nT+D) \). This sampling scheme is called Periodically Nonuniform Bandpass Sampling of Second Order (PNBS) and it will be presented in details in a further section.

In this section we present a succinct comparison between the two bandpass sampling techniques. We then show the advantages of using nonuniform sampling over uniform sampling for narrowband signals located at high frequency in the context of SDR testing. Afterward, we will examine some concerns and potential problems arising from practical implementations of a nonuniform sampler.

A. Periodic Bandpass Sampling

The advantage of bandpass sampling over Nyquist baseband sampling for RF systems is clear: the sampling frequency needed and the subsequent processing rate are proportional to the information bandwidth, rather than to the center (carrier) frequency.

The periodically uniform sampling technique is commonly used in bandpass sampling receivers, [13], [14]. The frequency domain view of ideal PBS is illustrated in Fig. 3. The red zone of spectrum represents the desired bandpass signal. The ideal sampling operation shown creates replicas of the original spectrum in each Nyquist zone. A bandpass filter (BPF) is required, otherwise unwanted signals outside the desired bandpass range will also appear at the 1st Nyquist zone (baseband).

The superposition of spectra due to frequency folding (aliasing) is a concern for the choice of sampling frequency \(f_s \). In effect, the relationship among \(f_s \), signal bandwidth \(B \), and upper range limit \(f_H \) is constrained if spectral superposition must be avoided. The feasible combination are depicted graphically in Fig. 4a (see [15]), where \(f_s \) and \(f_H \) are normalized w.r.t. signal bandwidth \(B \). The white regions

![Fig. 1. Architecture of a homodyne transceiver. The red blocks are the modifications required by the RF BIST technique we propose.](image1)

![Fig. 2. Bandpass Signal](image2)
of few hundreds of KHz.

Finally, if the center frequency of the signal changes, the acceptable sample rates also change and need to be recalculated.

To sum up, uniform bandpass sampling is effective, but impractical in real situations without incurring aliasing problems as the ratio \(f_H/B \) rises.

B. Periodically Nonuniform Bandpass Sampling (PNBS)

The discussions above suggest that the PBS technique is not well suited for test of software radios due to the lack of flexibility. Indeed, one of the most important characteristics of a software radio is its flexibility. That means that it is capable to operate over a wide range of operating parameters (frequency, data rate, modulation type, etc.). A well designed test strategy should be able to cover all of these configurations, with a minimum of effort and extra circuitry. This is not the case, when PBS is employed.

An alternative solution to the PBS is the PNBS technique. PNBS allows the reconstruction of bandpass signals from two sets of uniformly spaced samples, at the theoretical minimal rate and independent of the band locations (the straight red line in Fig. 4). This technique allows overcoming the limitations of the PBS and offers a higher level of flexibility.

Bandpass signal reconstruction from nonuniform samples was introduced in [12] with further results given in [11], [15]. Kohlenberg [12] showed that a bandpass signal \(f(t) \) (Fig. 2) can be reconstructed from two sets of uniform samples, \(f(nT) \) and \(f(nT + D) \) using the exact interpolation relation:

\[
f(t) = \sum_{n=-\infty}^{+\infty} \left[f(nT)s(t - nT) + f(nT + D)s(nT + D - t) \right]
\]

where \(T = 1/B \), \(D \) represents the phase delay and:

\[
s(t) = s_0(t) + s_1(t)
\]

\[
s_0(t) = \frac{\cos[2\pi(kB - f_i)t - k\pi BD] - \cos[2\pi f_i t - k\pi BD]}{2\pi Bt \sin k\pi BD}
\]

\[
s_1(t) = \frac{\cos[2\pi(f_i + B)t - (k + 1)\pi BD] - \cos[2\pi(kB - f_i)t - (k + 1)\pi BD]}{2\pi Bt \sin(k + 1)\pi BD}
\]

\[
k = \left\lceil \frac{2f_i}{B} \right\rceil \text{, where } \lceil \cdot \rceil \text{ is the ceiling operator}
\]
Proofs for equations (1), (2) and (3) and further discussions regarding the stability of reconstruction can be found in [12], [11]. In this paper our concern is the practical realization of a nonuniform sampler within a typical SDR platform. In the following we present some considerations regarding the choice of the delay \(D \), that directly affect the architecture of the nonuniform sampler we propose.

1) Choice of \(D \): The relation (1) is valid provided that \(D \) meets the following constraints:

\[
D \neq nT/k, \quad \forall n \in \mathbb{N} \quad (3a) \\
D \neq nT/(k + 1), \quad \forall n \in \mathbb{N} \quad (3b)
\]

If \(D \) assumes values which violate the conditions (3) then the reconstruction filter becomes unstable. If \(k = \frac{2B}{\Delta f} \), the first term of the reconstruction filter \(s_0(t) \) is 0 and the condition (3a) no longer applies.

The nonuniform sampling of \(f(t) \) can be done by two identical ADCs, both running at the sample rate, \(f_s \), that triggered with a constant time delay \(D \). Conceptually speaking, it is clear that the value assumed by the delay \(D \) is critical for the accuracy and computational cost of the signal reconstruction from the nonuniform sampled values. One can observe that if \(D \) approaches the right-hand values given in (3), the coefficients of the reconstruction filter rise progressively toward infinity. Unduly large values complicate the practical realization, since more terms will have significant values and will have to be more precisely computed. The authors in [15] showed that the optimal values of \(D \) w.r.t. the magnitude of the coefficients filter in (1) are \(D = \pm 1/(4f_c) \).

2) Reconstruction Robustness: There are other practical concerns with respect to the values of \(D \) (1). Our aim is to use slow time-interleaved ADCs to obtain nonuniformly spaced samples of \(f(t) \). In order to apply the relation (1), \(D \) must be known. Enforcing an accurate value of \(D \) is tricky, since the accuracy required is relative to the value of the carrier frequency. Let say that instead of knowing the real value of \(D \), only an estimate \(\hat{D} = D + \Delta D \) is available. It has been shown in [15] that the relative difference between the reconstructed spectrum \(\hat{F}(\nu) \) and the actual spectrum \(F(\nu) \) can be approximated as:

\[
\Delta F = \left| \frac{\hat{F}(\nu) - F(\nu)}{F(\nu)} \right| \approx \pi B(k + 1)\Delta D \quad (4)
\]

Equation (4) shows that, as the rapport between the center frequency and the signal bandwidth increases, the acceptable values for \(\Delta D \) become very small. Moreover the precision of reconstruction depends also on the high frequency \(f_c \), and not only on the signal bandwidth \(B \), as it would be desirable. This means that for higher carrier frequency, the estimation of \(D \) should be more accurate.

For example, for a bandpass signal at \(f_c = 1 \) GHz to be recovered from the samples of two ADCs running at \(f_s = 80 \) MHz with a precision of \(\Delta F = 1\% \), \(\Delta D \) must respect:

\[
\Delta D \leq \frac{1}{25} \frac{0.01}{\pi 800 \cdot 10^6} \approx 2 \text{ ps} \quad (5)
\]

The result from (5) is important because it proves that a robust bandpass reconstruction with PNBS is feasible. Indeed, there are several hardware implementations reported in literature (see [16], [17]) that can estimate and correct the time-skew between two ADCs with a granularity of few ps. Finally, equation (4) and the example from (5) establish that the most critical point while reconstructing a bandpass signal using nonuniform sampling is the accurate knowledge of \(D \).

3) Remarks: The main objective of this paper is to propose a nonuniform bandpass sampling architecture and a delay identification technique that will overcome the obstacles previously discussed. Using the SDR capabilities and the bandpass nonuniform sampler, our final purpose is to reconstruct and to observe the spectrum at the output of the Tx.

Before to propose a practical implementation of nonuniform sampler it is important to discuss its limitations:

- Noise Considerations. Compared to a classic analog receiver that uses mixers to translate the signal to baseband, a bandpass sampling technique degrades the Signal-to-Noise Ratio of the original signal. Even if a bandpass filter is used, the thermal noise is still aliased to the band of interest [15], [14]. For our purpose, this limitation is not a concern because we are more interested to characterize the Tx at higher signals level.
- Phase Noise. It is well known that the phase noise of the sampling clock limits the performances of the bandpass sampling technique [13]. Anyway, in [18] the authors showed that the clock jitter requirement for a bandpass sampling receiver are similar to the requirements for the local oscillator (LO) in a mixing receiver.
- Sample and Hold (S/H) circuits. The analog input bandwidth of the S/H circuits must cover all the RF signals we want to monitor. If it’s not the case with the S/H integrated in the Rx ADCs, we may want to consider introducing two S/H circuits before the ADCs in Fig. 1.

III. PROPOSED ARCHITECTURE

The theoretical results presented in the previous section allowed us to derive the general requirements on a nonuniform sampler designed to reconstruct a high-frequency bandpass signal. The architecture we are proposing is similar to a two-channel time-interleaved ADC (TIADC). Both architectures share the same limitations. This is why we start this section by giving a short overview of the TIADCs and their main problems.

A. Time-Interleaved Analog-to-Digital Converter

Fig. 5 shows a simplified block diagram of a two channels time-interleaved ADC. It consists of two ADCs operating in parallel at half of the overall sampling rate \(f_s = 1/T \). Theoretically, this interleaved structure would allow to multiply the overall sample rate achieved by each channel ADC without degrading other properties (resolution, distortion, etc.). This is not the case. The overall conversion properties worsen due to the unavoidable mismatches between different channels of a manufactured chip. The most important are offset error, gain...
Fig. 5. Block diagram of the two channels time-interleaved ADC architecture

Fig. 6. Block diagram of the proposed BP-TIADC architecture. The difference between this architecture and the one presented in Fig. 5 is the introduction of a Digitally Controlled Delay Element (DCDE) that will introduce a controlled delay D

error, and time-skew. The time-skew appears when the time-skew between the different ADCs is not equal. The sampling period is not constant, which will result in distortion of the recovered signal.

These limitations were recognized from the beginning and channel mismatch calibration strategies have been continuously introduced. The offset and the gain error calibrations are described in Section II-C. The challenge is how to estimate it accurately. The estimation problem will be discussed in the following section.

IV. TIME-SKEW DETECTION TECHNIQUE

In this section we discuss a time-skew identification technique proposed by [16], [17]. The choice is motivated by the high performances achieved by this technique, while keeping a simple practical implementation.

Let us consider the architecture in Fig. 6. The system response to the sinusoid input $x(t) = \cos(\omega_0 t), 0 < \omega_0 < \omega_s/2$ is:

$$y[m] = \cos(\omega_0 T_0) e^{-mT + \frac{d}{2} - (-1)^m \frac{d}{2}}$$

where $d = D - T$ and $\omega_s = 2\pi f_s = 2\pi/T$. After several manipulations:

$$y[m] = \cos\left[\frac{\omega_0 d}{2}\right] \cos\left[\omega_0 mT + \frac{\omega_0 d}{2}\right] - \sin\left[\frac{\omega_0 d}{2}\right] \sin\left(-\omega_0 + \frac{\omega_s}{2}\right)mT - \frac{\omega_0 d}{2}$$

Using the previous observations, the authors in [17] propose the architecture depicted in Fig. 7 as a technique to identify the delay between the two ADCs. In the following, we will present succinctly the technique. The output of the BP-TIADC, $y[m]$ is chopped to produce $y_d[m]$ and then is passed through a delay filter to produce $y_d[m]$.
If we replace frequency symbols shaped by a square root raised cosine filter with a nature of the studied architecture, simulations are carried out reasonable, the simulations presented in this paper are based each carrier cycle. However, to keep the computational effort tire framework is based, requires a explicitly simulation of Fig. 1. The block diagram of a homodyne transmitter is depicted in nowadays the first choice while designing a RF system [22]. and good performances, the homodyne transmitter became this paper, the behavioral model of a homodyne transmitter is of time-skew detection will follow the same trend.

Equation (12) proves that the block presented in Fig. 7 outputs a value that allows the identification of the time-skew \(D \). While having a simple practical implementation, this technique has some limitations. First of all, the input signal has to be bandlimited to less then \(\omega_s/2 \) and should not have a frequency component at \(\omega_s/4 \) (for a proof see [17], [16]). It is clear from (11) that \(\bar{\epsilon} \) peaks when the input frequency, \(\omega_0 \) is near \(\omega_s/4 \) and decreases at higher input frequencies. The sensitivity of time-skew detection will follow the same trend.

V. SIMULATION RESULTS

In order to validate the theoretical framework proposed in this paper, the behavioral model of a homodyne transmitter is considered. Because of its flexibility, high level of integrability and good performances, the homodyne transmitter became nowadays the first choice while designing a RF system [22]. The block diagram of a homodyne transmitter is depicted in Fig. 1.

The periodically nonuniform technique, on which the entire framework is based, requires a explicitly simulation of each carrier cycle. However, to keep the computational effort reasonable, the simulations presented in this paper are based on behavioral-passband models [23]. Because of the mixed nature of the studied architecture, simulations are carried out in Matlab.

The homodyne transmitter is driven by 10 MHz QPSK symbols shaped by a square root raised cosine filter with a roll-off factor of \(\alpha = 0.5 \). The signal is then translated at the frequency \(f_c = 1 \) GHz.

\[
y_c[m] = (-1)^m y[m] = a \cos \left(\frac{\omega_s}{2} - \omega_0 \right) mT - \frac{\omega_0 d}{4} + b \sin \left(\omega_0 mT + \frac{\omega_0 d}{2} \right)
\]

(8)

where \(a = \cos(\omega_0 d/2) \) and \(b = \sin(\omega_0 d/2) \)

The chopped signal goes through a delay filter, \(z^{-1} \) to produce:

\[
y_d[m] = a \cos \left(\frac{\omega_s}{2} - \omega_0 \right) (m - 1)T - \frac{\omega_0 d}{4} + b \sin \left(\omega_0 (m - 1)T + \frac{\omega_0 d}{2} \right)
\]

(9)

Then \(y[m] \) and \(y_d[m] \) are multiplied, the product having a dc that is equal to:

\[
\tau = \bar{y} = -ab \sin(\omega_0 T) = -\cos \left(\frac{\omega_0 d}{2} \right) \sin \left(\frac{\omega_0 d}{2} \right) \sin(\omega_0 T)
\]

(10)

If we replace \(d \) with \(D - T \), equation (10) becomes:

\[
\tau = -\sin(\omega_0 D - \omega_0 T) \sin(\omega_0 T)
\]

(11)

If |\(\omega_0 D | \ll 1 \), (11) can be simplified to:

\[
\tau \approx -\frac{\omega_0 D}{4} \sin(2\omega_0 T) + \frac{\sin^2(\omega_0 T)}{2}
\]

(12)

Equation (12) proves that the block presented in Fig. 7 outputs a value that allows the identification of the time-skew \(D \). To evaluate the performances of the digital time-skew detection technique presented in Section IV, several simulations for different values of \(\omega_0 \in [0.2\omega_s, 0.24\omega_s] \) were carried out. Fig. 8 shows the estimation \(\hat{D}/T \) over time as obtained from the output \(\tau \) of the time-skew detector presented in Fig. 7 and from (12) for several values of \(\omega_0 \). It can be observed that the estimations \(\hat{D}/T \) converge to ideal value of \(D/T \) every time.

To evaluate the performances of the digital time-skew estimation technique presented in Section IV, several simulations for different values of \(\omega_0 \in [0.2\omega_s, 0.24\omega_s] \) were carried out. Fig. 8 shows the estimation \(\hat{D}/T \) over time as obtained from the output \(\tau \) of the time-skew detector presented in Fig. 7 and from (12) for several values of \(\omega_0 \). It can be observed that the estimations \(\hat{D}/T \) converge to ideal value of \(D/T \) every time.

From now on, for each \(\omega_0 \) only the last estimation \(\hat{D} \) will be kept and analyzed. Table I presents a more detailed analysis of the results. Three metrics of interest are calculated. The second column represents the absolute difference between the value of \(D \) and the estimation \(\hat{D} \), while the third column shows the relative differences between the same variables.

Because the estimated value of \(D \) will be used by a periodically nonuniform sampling technique, a much more interesting metric is the relative error between the real signal and the reconstructed values:

\[
\Delta \epsilon \left(f^{2T}_D (t) \right) = \frac{\left| f(t) - f^{2T}_D (t) \right|}{\|f(t)\|}
\]

(13)

where \(f^{2T}_D (t) \) is the practical reconstruction function of \(f(t) \) from the samples \(f(2nT) \) and \(f(2nT + D) \):

\[
f^{2T}_D (t) = \sum_{n=\pm n_0/2}^{+n_0/2} [f(2nT)s(t - 2nT) + f(2nT + D)s(2nT + D - t)]
\]

(14)

and \(t = \{t, i = \overline{1, N}\} \) is a vector of \(N \) time values.

\[
\Delta \epsilon \left(f^{2T}_D (t) \right) \text{ is a measure of how close from } f(t) \text{ are the reconstruction } f^{2T}_D (t). \text{ In order to calculate this metric, we choose } N = 1000 \text{ random time values from the interval}
\]
TABLE I. TIME-SKEW ESTIMATION ANALYSIS

| \(|D - D^*\)| | \(\frac{|1 - D|}{D}\)| | \(\Delta \varepsilon \left(\frac{f_{DT}}{D} (t) \right)\) |
|---|---|---|
| \(D = D\) | 0 | 0 | 0% |
| \(\omega_0 = 0.2\omega_s\) | 5 ps | 2.8% | 3.5% |
| \(\omega_0 = 0.21\omega_s\) | 1.1 ps | 0.6% | 1.2% |
| \(\omega_0 = 0.23\omega_s\) | 0.3 ps | 0.1% | 1% |

As proved in theory, the digital time-skew detection technique manages to offer a good estimation of \(D\). Moreover, the estimation, \(\hat{D}\) for the last two rows in Table I respect the requirements imposed by (4) and (5). It can be seen from the Table I that the sensitivity of time-skew detection increases as \(\omega_0\) approaches \(0.25\omega_s\). Finally, one can note that this detection technique is sensitive to the value of \(\omega_0\), which is a drawback.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced an RF BIST strategy based on Periodically Nonuniform Sampling of the signal at the output stages of multistandard radios. We leverage the I/Q ADC channels and the DSP resources to extract the bandpass waveform at the output of the power amplifier (PA). Analytical expressions and simulations show that our time-interleaved conversion scheme is sensitive to time-skew. We presented a time-skew estimation technique that allows us to surmount this obstacle. Simulation results show that we can effectively reconstruct the bandpass signal of the output stage using this architecture, opening the way for a complete RF BIST strategy for multistandard radios.

Future developments will be focused on the efficient mapping to hardware of our new time-skew estimation for TIADC bandpass conversion.rm ADC.

REFERENCES