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ABSTRACT 

In general, two types of dependence need to be considered when estimating the probability of 

the Top Event (TE) of a Fault Tree (FT): ‘objective’ dependence between the (random) 

occurrences of different Basic Events (BEs) in the FT and ‘state-of-knowledge’ (epistemic) 

dependence between estimates of the epistemically-uncertain probabilities of some BEs of the 

FT model. 

In this paper, we study the effects on the TE probability of objective and epistemic 

dependences. The well-known Frèchet bounds and the Distribution Envelope Determination 

(DEnv) method are used to model all kinds of (possibly unknown) objective and epistemic 

dependences, respectively. 

For exemplification, the analyses are carried out on a FT with six BEs. Results show that both 

types of dependence significantly affect the TE probability; however, the effects of epistemic 

dependence are likely to be overwhelmed by those of objective dependence (if present). 

 

KEYWORDS : fault tree; epistemically-uncertain probabilities; objective and epistemic 

dependences. 
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1 INTRODUCTION 

In Fault Tree Analysis (FTA) (1-5), limiting relative frequency probabilities are typically used 

to describe aleatory uncertainty and subjective probabilities to describe epistemic uncertainty1 

(2, 6-14). Recently, it has been argued that a probabilistic representation of epistemic uncertainty 

is difficult to justify in those cases in which the analysis is carried out based on insufficient 

knowledge, information and data. To overcome this hurdle, a number of alternative non-

probabilistic representation frameworks have been proposed (15-19), e.g., fuzzy set theory (20-28), 

possibility theory (29-33), hybrid combinations of probability and possibility theories (30, 34-36), 

Dempster-Shafer (DS) theory of evidence (37-44) and interval analysis (45-49). 

To describe the epistemic uncertainty in the probabilities (chances) of the Basic Events (BEs) 

of a Fault Tree (FT) model, here we use possibility distributions and DS structures, together 

with probability distributions. The epistemic uncertainties are then propagated onto the 

probability (chance) of the Top Event (TE) by resorting to the general and comprehensive 

framework of DS theory of evidence (37-44). 

 

Dependence may exist among some BEs of the FT model (40). In particular, two types of 

dependence need to be considered. The first type relates to the (dependent) occurrence of 

different (random) BEs (in the following, this kind of dependence will be referred to as 

‘objective’ or ‘aleatory’). An example of this objective (aleatory) dependence may be 

represented by the occurrence of multiple failures which result directly from a common or 

shared root cause (e.g., extreme environmental conditions, failure of a piece of hardware 

external to the system, or a human error): they are termed Common Cause Failures (CCFs) 

                                                 
1 In the following, ‘probability’ refers to the limiting relative frequency concept whenever followed by the word 
‘chance’ in parenthesis, and to the epistemic concept whenever used alone. 
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and frequently affect, e.g., identical components in redundant trains of a safety system (2, 50-52); 

another example is that of cascading failures, i.e., multiple failures initiated by the failure of 

one component in the system, as a sort of chain reaction or domino effect (52-57). The second 

type refers to the dependence possibly existing between the estimates of the epistemically-

uncertain probabilities (chances) of some BEs of the FT model (in the following, this kind of 

dependence will be referred to as ‘state-of-knowledge’ or ‘epistemic’). This state-of-

knowledge (epistemic) dependence exists when the probabilities (chances) of some BEs are 

estimated by resorting to dependent information sources (e.g., to the same experts/observers 

or to correlated data sets) (2, 11). 

 

In this context, the aim of the present paper is to systematically analyze and quantify the 

effects of objective (aleatory) and state-of-knowledge (epistemic) dependences between the 

BEs on the TE probability (chance). In more details, the following analyses are performed: 

1. the study of the effects of different states of objective dependence between the BEs 

when the state of epistemic dependence between the BE probabilities (chances) is 

defined. In this analysis the well-known Frèchet bounds (40, 58-60) are used to model the 

full range of objective dependences here of interest; 

2. the study of the effects of different states of epistemic dependence between the BE 

probabilities (chances) when the state of objective dependence between the BEs is 

given. In this analysis the Distribution Envelope Determination (DEnv) method (61-65) 

is undertaken in order to account for all kinds of (possibly unknown) epistemic 

dependences between the BE probabilities (chances). 

To keep the analysis simple and thus retain a clear view of each step, the investigations are 

carried out with respect to an example involving a FT with six BEs; different numerical 

indicators are considered to perform a fair and quantitative comparison between different 
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states of objective and epistemic dependence and evaluate their effects on the TE probability 

(chance). 

 

The work benefits from the efforts that have already been done to address objective and state-

of-knowledge dependences in FTA. In (66-68) objective dependencies between BEs are treated 

by means of alpha factor models within the traditional framework of Common Cause Failure 

(CCF) analysis. In (40) and (60) the use of Frank copula and Pearson correlation coefficient is 

proposed to describe a wide range of objective dependences between the BEs. In (69) and (70) 

(fuzzy) dependency factors are employed to model dependent BEs. In (71-74) state-of-

knowledge dependences between the BE probabilities (chances) are described by traditional 

correlation coefficients and propagated by the method of moments. In (68) and (75) statistical 

epistemic correlations are modeled by resorting to the Nataf transformation (76) within a 

traditional Monte Carlo Simulation (MCS) framework (77, 78). Finally, in (79) the Dependency 

Bound Convolution (DBC) approach is undertaken to account for all kinds of (possibly 

unknown) epistemic dependences between the probabilities (chances) of correlated BEs. 

 

The remainder of the paper is organized as follows. In Section 2, the methods employed in 

this study to model objective and state-of-knowledge dependences in FTA are described; in 

Section 3, the FT studied is presented; in Section 4, the results of the application of the 

methods of Section 2 to the FT of Section 3 are shown; finally, Section 5 offers some 

discussions and conclusions. 
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2 METHODS EMPLOYED IN THIS STUDY FOR MODELING 

DEPENDENCES IN FAULT TREE ANALYSIS 

In this Section, the computational strategies here employed for modeling dependences in 

Fault Tree Analysis (FTA) are described in detail: in particular, Section 2.1 deals with the 

representation of objective (aleatory) dependences between (the occurrence of) Basic Events 

(BEs); instead, Section 2.2 concerns the treatment of state-of-knowledge (epistemic) 

dependences between the probabilities (chances) of the BEs. 

Other approaches for modeling objective dependences between (random) events can be found 

in (40, 60, 66-70). 

2.1 Modeling objective (aleatory) dependences between the basic events 

Let B1 and B2 be two BEs with probabilities (chances) ( )1BP  and ( )2BP , respectively; with 

reference to the simple parallel and series systems of Figure 1 (left and right, respectively), B1 

and B2 may represent the events of failure of Components 1 and 2, respectively, and ( )1BP  

and ( )2BP  the corresponding probabilities (chances). If B1 and B2 are independent, the 

occurrence of one event (e.g., failure of Component 1) does not affect the occurrence of the 

other (e.g., failure of Component 2), i.e., ( ) ( )121 | BPBBP =  and ( ) ( )212 | BPBBP = . Then, the 

probabilities (chances) ( )21 BBP ind∩  and ( )21 BBP ind∪  of the conjunction ( 21 BB ind∩ ) and 

disjunction ( 21 BB ind∪ ) of events B1 and B2 (i.e., the probabilities-chances of failure of the 

parallel and series systems of Figure 1, left and right, respectively) are given by the well-

known deterministic functions ( ) ( )( )21 ,
21

BPBPg BB ind∩  (1) and ( ) ( )( )21 ,
21

BPBPg BB ind∪  (2), 

respectively (40, 60): 

( ) ( ) ( )( ) ( ) ( )212121 ,
21

BPBPBPBPgBBP BBind ind
⋅==∩ ∩  (1) 

( ) ( ) ( )( ) ( )( ) ( )( )212121 111,
21

BPBPBPBPgBBP BBind ind
−⋅−−==∪ ∪  (2) 
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where the symbols ‘ ind∩ ’ and ‘ ind∪ ’ denote the conjunction and disjunction of independent 

events, respectively. 

If events B1 and B2 are perfectly dependent (i.e., B1 ⊂  B2 or B2 ⊂  B1), the occurrence of one 

event (e.g., failure of Component 1 in Figure 1) implies the occurrence of the other (e.g., 

failure of Component 2 in Figure 1) (i.e., ( ) 1| 12 =BBP  or ( ) 1| 21 =BBP , respectively). In this 

case, ( )21 BBP perf∩  and ( )21 BBP perf∪  are given by (3) and (4), respectively (40, 60): 

( ) ( ) ( )( ) ( ) ( )( )212121 ,min,
21

BPBPBPBPgBBP BBperf perf
==∩ ∩  (3) 

( ) ( ) ( )( ) ( ) ( )( )212121 ,max,
21

BPBPBPBPgBBP BBperf perf
==∪ ∪  (4) 

where the symbols ‘ perf∩ ’ and ‘ perf∪ ’ denote the conjunction and disjunction of perfectly 

dependent events, respectively. Examples of perfect dependence can be found in many 

engineered systems. For example, some components may be subject to the same maintenance 

strategy and suffer a common mistake in the procedure, or may experience the same history of 

environmental conditions leading to failure. Such shared life conditions may make failures of 

components close to be perfectly dependent events (2, 40, 50, 51). The importance of this state of 

dependence can be understood with reference to the simple parallel system of Figure 1, left: if 

Components 1 and 2 were perfectly dependent, the failure of only one component would lead 

to the failure of the entire parallel system. 

Finally, if events B1 and B2 are oppositely dependent, the occurrence of one event minimizes 

the likelihood of occurrence of the other. In this case, ( )21 BBP opp∩  and ( )21 BBP opp∪  are 

given by (5) and (6), respectively (40, 60): 

( ) ( ) ( )( ) ( ) ( )( )0,1max, 212121 21
−+==∩ ∩ BPBPBPBPgBBP BBopp opp

 (5) 

( ) ( ) ( )( ) ( ) ( )( )1,min, 212121 21
BPBPBPBPgBBP BBopp opp

+==∪ ∪  (6) 
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where the symbols ‘ opp∩ ’ and ‘ opp∪ ’ denote the conjunction and disjunction of oppositely 

dependent events, respectively. An example of opposite dependence may be represented by 

the series of a fuse wire (e.g., Component 1 in Figure 1, right) and an electronic device (e.g., 

Component 2 in Figure 1, right). In case of overcurrent, failure of the fuse wire (event B1) 

prevents failure of the electronic component (event B2); thus, the joint failure of both 

components might be better modeled by events that are oppositely dependent than 

independent. 

 

When no information at all about the state of objective dependence between events B1 and B2 

is available, precise estimates for ( )21 BBP ∩  and ( )21 BBP ∪  cannot be computed. Instead, 

extreme bounds ( )21 BBP ukn∩  (7) and ( )21 BBP ukn∪  (8) on ( )21 BBP ∩  and ( )21 BBP ∪ , 

respectively, can be obtained by means of the classical Frèchet inequalities (40, 58-60): 

( ) ( ) ( )( ) ( ) ( )( )[ ]212121 ,min,0,1max],[
2121

BPBPBPBPggBBP BBBBukn perfopp
−+==∩ ∩∩  (7) 

( ) ( ) ( )( ) ( ) ( )( )[ ]1,min,,max],[ 212121 2121
BPBPBPBPggBBP BBBBukn oppperf

+==∪ ∪∪  (8) 

where functions 
21 BB perf

g ∩ , 
21 BB perf

g ∪ , 
21 BB opp

g ∩  and 
21 BB opp

g ∪  are defined in (3)-(6) and the 

symbols ‘ ukn∩ ’ and ‘ ukn∪ ’ denote the conjunction and disjunction of events whose state of 

objective dependence is completely unknown, respectively. As stated in (40), it is worth 

mentioning that i) ( )21 BBP ukn∩  (7) and ( )21 BBP ukn∪  (8) are “bounds on all possible cases 

of objective dependence” (because they include by construction dependences ranging from 

opposite to perfect) and ii) they represent the “best possible bounds in the absence of 

information about objective dependence, i.e., they could not be any tighter without excluding 

some possible objective dependences” (40). 
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Finally, if the analyst is able to say something about the sign of objective dependence, then 

Frèchet bounds (7) and (8) can be tightened. In particular, if B1 and B2 are positively 

dependent, i.e., the occurrence of one event favors the occurrence of the other, then 

( ) ( )121 | BPBBP >  and ( ) ( )212 | BPBBP > , from which it follows that 

( ) ( )2121 BBPBBP indpos ∩>∩ . In this case, bounds ( )21 BBP pos∩  and ( )21 BBP pos∪  on 

( )21 BBP ∩  and ( )21 BBP ∪  are obtained by (9) and (10), respectively (40, 60): 

( ) ( ) ( ) ( ) ( )( )[ ]212121 ,min,],[
2121

BPBPBPBPggBBP BBBBpos perfind
⋅==∩ ∩∩  (9) 

( ) ( ) ( )( ) ( )( ) ( )( )[ ]212121 111,,max],[
2121

BPBPBPBPggBBP BBBBpos indperf
−⋅−−==∪ ∪∪ . (10) 

On the contrary, if B1 and B2 are negatively dependent, then bounds ( )21 BBP neg∩  and 

( )21 BBP neg∪  on ( )21 BBP ∩  and ( )21 BBP ∪  are obtained using (11) and (12), respectively 

(40, 60): 

( ) ( ) ( )( ) ( ) ( )[ ]212121 ,0,1max],[
2121

BPBPBPBPggBBP BBBBneg indopp
⋅−+==∩ ∩∩  (11) 

( ) ( )( ) ( )( ) ( ) ( )( )[ ]1,min,111],[ 212121 2121
BPBPBPBPggBBP BBBBneg oppind

+−⋅−−==∪ ∪∪ . (12) 

      

Figure 1. Simple parallel (left) and series (right) systems of two components whose failure 

probabilities (chances) are P(B1) and P(B2), respectively 

2.2 Modeling state-of-knowledge (epistemic) dependences between the 

probabilities (chances) of the basic events 

In all generality, let us assume that: 

i. events B1 and B2 are linked to an event Z of interest by the generic logical connection 

‘�’ (e.g., ‘�’ may stand for ‘∩ ’, ‘ ∪ ’, …); 
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ii.  the state of objective dependence between events B1 and B2 is defined and indicated as 

‘�obj’: for example, if there is positive objective dependence between B1 and B2, then 

the subscript ‘obj’ stands for ‘pos’ (see the previous Section 2.1); 

iii.  the probability (chance) P(Z) of the event Z = (B1 �obj B2) of interest is obtained as 

P(Z) = ( ) ( )( )21 , BPBPgZ , where ( ) ( )( )21 , BPBPgZ  is a deterministic function which 

provides a formal, mathematical description of the state of objective dependence 

between events B1 and B2 (for example, gZ(·, ·) may be one of those reported in (1)-

(12)). 

iv. the probabilities (chances) ( )1BP  and ( )2BP  of events B1 and B2 are considered 

epistemically-uncertain. For ease of explanation, let us suppose that the epistemic 

uncertainty on ( )1BP  and ( )2BP  is represented by the Dempster-Shafer (DS) 

structures ( ) ( )( )( ){ }
111

...,,2,1:, B
i

BP
i

BP niAmA =  and ( ) ( )( )( ){ }
222

...,,2,1:, B
j

BP
j

BP njAmA = , 

respectively: in other words, ( )1BP  and ( )2BP  are described by two sets of 
1Bn  and 

2Bn  intervals (focal elements) ( ) ],[
111

i
B

i

B

i
BP ppA = , i = 1, 2, …, 

1Bn , and 

( ) ],[
222

j
B

j

B

j
BP ppA = , j = 1, 2, …, 

2Bn , respectively, each of which is assigned a 

probability (or belief) mass ( )( )i
BPAm

1
, i = 1, 2, …, 

1Bn , and ( )( )j
BPAm

2
, j = 1, 2, …, 

2Bn , 

respectively (it is worth stressing that ( )( )i
BPAm

1
 and ( )( )j

BPAm
2

 represent the degrees of 

belief of membership of P(B1) and P(B2) in sets ( )
i

BPA
1

 and ( )
j

BPA
2

 only, but without any 

specification of how these degrees of belief might be apportioned over ( )
i

BPA
1

 and 

( )
j

BPA
2

, respectively; in other words, ( )( )i
BPAm

1
 and ( )( )j

BPAm
2

 express the proportion to 

which all available and relevant evidence supports the claim that P(B1) and P(B2), 

whose characterization is incomplete, belong to sets ( )
i

BPA
1

 and ( )
j

BPA
2

, respectively). 
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By way of example, let ( ) ( )( )( ){ }2...,,2,1:,
111

== B
i

BP
i

BP niAmA  = 

[ ]( ) [ ]( ){ }65.0,60.0,40.0,35.0,50.0,20.0  and ( ) ( )( )( ){ }2...,,2,1:,
222

== B
j

BP
j

BP njAmA  = 

[ ]( ) [ ]( ){ }55.0,45.0,30.0,45.0,35.0,10.0 : for clarity, the corresponding DS structures are 

pictorially shown in Figure 2, top left and right, respectively. Referring to probability 

(chance) P(B1) of event B1 (Figure 2, top left), the corresponding DS structure can be 

interpreted as follows: probability (chance) P(B1) of event B1 lies within interval ( )
1

1BPA  

= [0.20, 0.50] at least with probability ( )( )1

1BPAm  = 0.35, whereas it lies within interval 

( )
2

1BPA  = [0.40, 0.60] at least with probability ( )( )2

1BPAm  = 0.65. Notice that the DS 

structures described above can be transformed into upper and lower Cumulative 

Distribution Functions (CDFs) ( )1BPF , ( )2BPF , ( )1BPF  and ( )2BPF  for P(B1) and P(B2), 

respectively: in particular, ( )( )
1

1
B

BP pF  = ( ) ][
11 BpBPP <  = ( )( )

( ) [ ]
�

≠∩ 0,0
11

1

B
i

BP pA

i
BPAm  and 

( )( )
1

1

B
BP pF  = ( ) ][

11 BpBPP <  = ( )( )
( ) [ ]
�
⊂

11

1

,0 B
i

BP pA

i
BPAm ; in the same way, ( )( )

2

2
B

BP pF  = 

( ) ][
22 BpBPP <  = ( )( )

( ) [ ]
�

≠∩ 0,0
22

2

B
j

BP pA

j
BPAm  and ( )( )

2

2

B
BP pF  = ( ) ][

22 BpBPP <  = 

( )( )
( ) [ ]
�
⊂

22

2

,0 B
j

BP pA

j
BPAm . The upper and lower CDFs, ( )1BPF , ( )2BPF , ( )1BPF  and ( )2BPF , 

respectively, corresponding to the illustrative DS structures [ ]( ){ 35.0,50.0,20.0 , 

[ ]( )}65.0,60.0,40.0  and [ ]( ){ 45.0,35.0,10.0 , [ ]( )}55.0,45.0,30.0  of P(B1) and P(B2) are 

pictorially shown in Figure 2, bottom left and right, respectively. For example, 

referring again to event B1, the upper and lower CDFs, ( )1BPF  and ( )1BPF , can be 

interpreted as follows: the probability ( ) ][
11 BpBPP <  that P(B1) is lower than or equal 

to, e.g., 
1Bp  = 0.30 lies within interval ( )( ) ( )( )]30.0,30.0[ 11 BPBP FF  = [0, 0.35] (referring 
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to the concept of Bayesian subjective probabilities, the bounds 

( )( ) ( )( )]30.0,30.0[ 11 BPBP FF  = [0, 0.35] reflect that the analyst is not able or willing to 

precisely assign his/her probability ( ) ][
11 BpBPP < ). Further details about DS 

structures (and DS theory of evidence) are not given here for brevity: the interested 

reader is referred to the copious literature in the field2 (37-44). 
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Figure 2. Top: illustrative DS structures [ ]( ) [ ]( ){ }65.0,60.0,40.0,35.0,50.0,20.0  and 

[ ]( ) [ ]( ){ }55.0,45.0,30.0,45.0,35.0,10.0  for P(B1) (left) and P(B2) (right), respectively. Bottom: 

upper (solid line) and lower (dashed line) CDFs, ( )1BPF , ( )2BPF , ( )1BPF  and ( )2BPF , 
respectively, corresponding to the illustrative DS structures described above 

 

The focal elements ( ) ],[ ij
Z

ij

Z

ij
ZP ppA = , i = 1, 2, …, 

1Bn , j = 1, 2, …, 
2Bn , of the probability 

(chance) P(Z) of the event Z = (B1 �obj B2) are obtained as images of the focal sets ( )
i

BPA
1

, i = 

                                                 
2 Notice that representing the epistemic uncertainty in the probabilities (chances) ( )1BP  and ( )2BP  by DS 

structures does not impair the generality of the description. Actually, any other type of distribution that may be 
used to describe the epistemic uncertainty in ( )1BP  and ( )2BP  can be easily transformed into a DS structure: 

approaches for transforming probability distributions can be found in (80) and (81), whereas techniques for 
transforming possibility distributions can be found in (30). 
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1, 2, …, 
1Bn , and ( )

j
BPA

2
, j = 1, 2, …, 

2Bn , through the function ( ) ( )( )21 , BPBPgZ  as ( )
ij

ZPA  = 

],[ ij
Z

ij

Z
pp  = 

( ) ( ) ( ) ( )
( ) ( )( ){ }

( ) ( ) ( ) ( )
( ) ( )( ){ } �

�

�
�
�

�
∈∈∈∈

21
,

21
,

,max,,min
22112211

BPBPgBPBPg Z
ABPABP

Z
ABPABP j

BP
i

BP
j

BP
i

BP

, i = 1, 

2, …, 
1Bn , j = 1, 2, …, 

2Bn . For illustration purposes, again let B1 and B2 be the events of 

failure of Components 1 and 2, respectively, of the simple parallel system of Figure 1 left, and 

P(B1) and P(B2) the corresponding probabilities (chances): then, the probability (chance) P(Z) 

of failure of the parallel system of Figure 1 left is the probability (chance) of the conjunction 

Z = (B1 �obj B2) of B1 and B2. For the sake of simplicity, we also suppose that B1 and B2 are 

(objectively) independent events (i.e., ‘obj’ = ‘ ind’): in such a case, P(Z) is given by the 

product of P(B1) and P(B2), i.e., P(Z) = ( ) ( )( )21 , BPBPgZ  = P(B1)·P(B2) (see (1)). Finally, we 

suppose that P(B1) and P(B2) are distributed as in Figure 2. In this case, the lower (resp., 

upper) bound ij

Z
p  (resp., ij

Zp ) of the focal set ( )
ij

ZPA  is computed as the product of the lower 

bounds i

B
p

1

 and j

B
p

2

 (resp., upper bounds iBp
1
 and j

Bp
2
) of the focal sets ( )

i
BPA

1
 and ( )

j
BPA

2
, 

respectively, i.e., ij

Z
p  = i

B
p

1

· j

B
p

2

 (resp., ij
Zp  = i

Bp
1
· j

Bp
2
), i = 1, 2, j = 1, 2. Thus, it is found that 

( )
11

ZPA  = [0.2·0.1, 0.5·0.35] = [0.02, 0.175], ( )
12

ZPA  = [0.2·0.3, 0.5·0.45] = [0.06, 0.225], ( )
21

ZPA  = 

[0.4·0.1, 0.6·0.35] = [0.04, 0.210], ( )
22

ZPA  = [0.4·0.3, 0.6·0.45] = [0.120, 0.270]. 

The probability masses ( )( )ij
ZPAm  of the focal elements ( )

ij
ZPA , i = 1, 2, …, 

1Bn , j = 1, 2, …, 

2Bn , thereby obtained have to be determined based on the state of epistemic dependence 

between the estimates of ( )1BP  and ( )2BP . Three conditions of epistemic dependence are 

often encountered in risk assessment problems and, thus, considered in this paper: i) 
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independence (Section 2.2.1), ii) total (perfect) dependence (Section 2.2.2) and iii) unknown 

dependence3 (Section 2.2.3). 

2.2.1 Independence 

If the distributions describing the epistemic uncertainty associated to ( )1BP  and ( )2BP  are 

built using different information sources (e.g., different experts, observers or data sets), then 

state-of-knowledge independence (item i. above, ‘epi’ = ‘ ind’) exists between the estimates of 

( )1BP  and ( )2BP : in this paper, such condition is modeled by assuming random set 

independence between the focal elements ( ) ],[
111

i
B

i

B

i
BP ppA = , i = 1, 2, …, 

1Bn , and 

( ) ],[
222

j
B

j

B

j
BP ppA = , j = 1, 2, …, 

2Bn  (40, 82-84). In practice, this amounts to computing the 

probability masses ( )( )ij
ZPAm  of the focal elements ( )

ij
ZPA  as the product of the probability 

masses ( )( )i
BPAm

1
 and ( )( )j

BPAm
2

, i.e., ( )( )ij
ZPAm  = ( )( )i

BPAm
1

· ( )( )j
BPAm

2
, i = 1, 2, …, 

1Bn , j = 1, 2, 

…, 
2Bn . Thus, referring again to the example above, it is found that under the assumption of 

random set independence (‘epi’ = ‘ ind’) the probability masses of the focal sets ( )
11

ZPA  = [0.02, 

0.175], ( )
12

ZPA  = [0.06, 0.225], ( )
21

ZPA  = [0.04, 0.210] and ( )
22

ZPA  = [0.120, 0.270] are ( )( )11
ZPAm  = 

0.35�0.45 = 0.1575, ( )( )12
ZPAm  = 0.35�0.55 = 0.1925, ( )( )21

ZPAm  = 0.65�0.45 = 0.2925 and 

( )( )22
ZPAm  = 0.65�0.55 = 0.3575, respectively. The corresponding upper and lower CDFs, 

( )ZPF  and ( )ZPF , of the probability (chance) P(Z) of Z = (B1 �ind B2)
ind are shown in Figure 3, 

top left. 

                                                 
3 In the rest of the paper, the state of epistemic dependence between the probabilities (chances) P(B1) and P(B2) 
of events B1 and B2 linked to an event Z of interest by the logical connection ‘�obj’ is indicated as (B1 �obj B2)

epi, 
where the superscript ‘epi’ stands for ‘ind’, ‘ perf’ or ‘ukn’ in the cases of independence, total (perfect) or 
unknown epistemic dependence, respectively. 



 15

2.2.2 Total (perfect) dependence 

When the same information source is employed to construct the uncertainty distributions for 

( )1BP  and ( )2BP , then total (perfect) dependence (item ii. above, ‘epi’ = ‘ perf’) exists 

between the estimates of ( )1BP  and ( )2BP  (2, 11). By way of example, consider the case of a 

system containing a number of physically distinct, but similar/nominally identical 

components whose failure probabilities (chances) are estimated by means of the same data 

set: in such situation, the state of knowledge about these failure probabilities (chances) is 

exactly the same and, thus, the distributions describing the epistemic uncertainty associated to 

such failure probabilities (chances) have to be considered totally (perfectly) dependent4 (2, 11). 

In this paper, such condition is straightforwardly modeled by imposing maximal correlation 

between the distributions of ( )1BP  and ( )2BP  (2, 11). In practice, assuming that the 

distributions of ( )1BP  and ( )2BP  are totally (perfectly) correlated implies that when one 

uncertain parameter (e.g., P(B1)) is large with reference to its statistical distribution, then also 

the other uncertain parameter (e.g., P(B2)) is large “to the same degree with respect to its own 

statistical distribution” (40). This “empirical” definition suggests the computational strategy for 

simulating total (perfect) correlation between the distributions of the uncertain parameters 

( )1BP  and ( )2BP : i) choose a set of nB (equally spaced) values �i, i = 1, 2, …, nB, within [0, 1) 

(e.g., �1 = 0, �2 = 0.01, …, �nB-1 = 0.99, �nB = 1); ii) identify the corresponding focal sets 

( ) ],[
111

i
B

i

B

i
BP ppA =  and ( ) ],[

222

i
B

i

B

i
BP ppA =  of ( )1BP  and ( )2BP  using the inverse transform 

                                                 
4 As stated in Ref. 2-Page 54, “an analyst’s state of knowledge about the possible values of a parameter � can be 
expressed in terms of a probability distribution ( )θθf  when using Bayesian updating or expert judgment. It is 

common practice to assign the same value to the parameters of BEs of identical or similar components. 
Therefore, for example, the probability of failure of a class of identical motor-operated valves (MOVs) to open is 
considered the same. Suppose that �1 and �2 represent the parameters of two physically distinct but identical 
MOVs: because this discussion assumes that all such MOVs have the same parameter, it is necessary to set �1 = 
�2. Moreover, because the analyst’s state of knowledge is the same for the two valves, it follows that ( )1

1 θθf  = 

( )2
2 θθf . Thus, ( )1

1 θθf  and ( )2
2 θθf  must be regarded as being equal distributions and treated as completely 

dependent distributions”. 



 16

method, i.e., ( )( ) ( ) ( )( ) ( )],[
11

11 iBPiBP FF ββ
−−

 and ( )( ) ( ) ( )( ) ( )],[
11

22 iBPiBP FF ββ
−−

, i = 1, 2, …, nB, 

respectively (notice that using the same values �i for the identification of the focal sets of both 

( )1BP  and ( )2BP  implies total (perfect) dependence between them) (11); iii) calculate the focal 

elements ( )
i

ZPA  as 
( ) ( ) ( ) ( )

( ) ( )( ){ }��

�
∈∈

21
,

,min
2211

BPBPgZ
ABPABP i

BP
i

BP

,
( ) ( ) ( ) ( )

( ) ( )( ){ } �
�

�
∈∈

21
,

,max
2211

BPBPgZ
ABPABP i

BP
i

BP

, 

i = 1, 2, …, nB; iv) associate to ( )
i

ZPA  the probability mass ( )( ) B
i

ZP nAm /1= , i = 1, 2, …, nB. 

Referring again to the example above, it is found that under the assumption of total (perfect) 

epistemic dependence the probability masses of the focal sets ( )
11

ZPA  = [0.02, 0.175], ( )
12

ZPA  = 

[0.06, 0.225], ( )
21

ZPA  = [0.04, 0.210] and ( )
22

ZPA  = [0.120, 0.270] obtained by performing steps 

i)-iv) above are ( )( )11
ZPAm  = 0.35, ( )( )12

ZPAm  = 0, ( )( )21
ZPAm  = 0.10 and ( )( )22

ZPAm  = 0.55, 

respectively. The resulting upper and lower CDFs, ( )ZPF  and ( )ZPF , of the probability 

(chance) P(Z) of Z = (B1 �ind B2)
perf are shown in Figure 3, top right. 

2.2.3 Unknown dependence 

When the state of dependence between the information sources used to build the distributions 

of ( )1BP  and ( )2BP  cannot be defined precisely by the analyst (item iii. above, ‘epi’ = ‘ ukn’), 

for the sake of conservatism all kinds of (possibly unknown) epistemic dependences between 

the estimates of ( )1BP  and ( )2BP  have to be accounted for. In this paper, the Distribution 

Envelope Determination (DEnv) method (61-65) is adopted to this aim. The DEnv method 

allows computing extreme upper and lower Cumulative Distribution Functions (CDFs) 

( )( )Z
ZP

DEnv pF  and ( ) ( )Z
ZP

DEnv pF  on the probability (chance) P(Z) = ( ) ( )( )21 , BPBPgZ  of the event Z 

= (B1 �obj B2)
ukn of interest no matter what correlations or dependencies exist among ( )1BP  

and ( )2BP ; these bounds are also the “pointwise best possible, which means they could not be 

any tighter without excluding some possible dependences” (40). In practice, the aim of the 
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DEnv approach is to identify the 
1Bn ·

2Bn  probability masses ( )( )ij
ZPAm  for the focal elements 

( )
ij

ZPA , i = 1, 2, …, 
1Bn , j = 1, 2, …, 

2Bn , such that the upper CDF on P(Z) is the maximal 

possible (i.e., ( )( )Z
ZP

DEnv pF  = ( )( ){ }Z
ZP pFmax ) and the lower CDF on P(Z) is the minimal 

possible ( ( ) ( )Z
ZP

DEnv pF  = ( )( ){ }Z
ZP pFmin ) provided that a precise set of constraints is satisfied 

(61-65). In more detail, ( )( )Z
ZP

DEnv pF  and ( ) ( )Z
ZP

DEnv pF  are found by solving the following linear 

maximization (13) and minimization (14) problems, respectively: 

( )( )
( )( ) ( )( ){ } ( )( )

( ) ( ) ( )( ) [ ]
Z

pAAgA

ij
ZPZ

ZP
Z

ZP
DEnv

BB
ij

ZP

pAmpFpF

njniAm

Z
j

BP
i

BPZ
ij

ZP

∀
�	

�
A
B

�C

�
D
E

==

==

�
≠∩=

,maxmax

:...,,2,1,...,,2,1,Find

0,0,
21

21

 (13) 

( )( )
( ) ( ) ( )( ){ } ( )( )

( ) ( ) ( )( ) [ ]
Z

pAAgA

ij
ZPZ

ZP
Z

ZP
DEnv

BB
ij

ZP

pAmpFpF

njniAm

Z
j

BP
i

BPZ
ij

ZP

∀
�	

�
A
B

�C

�
D
E

==

==

�
⊂=

,minmin

:...,,2,1,...,,2,1,Find

,0,
21

21

 (14) 

subject to the constraints that i) the probability masses ( )( )i
BPAm

1
 and ( )( )j

BPAm
2

 are conserved 

(i.e., ( )( ) ( )( )j
BP

n

i

ij
ZP AmAm

B

2

1

1

=�
=

, j = 1, 2, …, 
2Bn , and ( )( ) ( )( )i

BP

n

j

ij
ZP AmAm

B

1

2

1

=�
=

, i = 1, 2, …, 
1Bn ) 

and ii) the probability masses ( )( )ij
ZPAm  are larger than or equal to zero. For illustration 

purposes, the values of ( )( )Z
ZP

DEnv pF  = ( )( )08.0ZP
DEnvF  and ( ) ( )Z

ZP
DEnv pF  = ( ) ( )22.0ZP

DEnvF  are calculated 

with reference to the example above. In order to calculate ( )( )08.0ZP
DEnvF  by solving 

maximization problem (13), those focal sets among ( )
ij

ZPA , i = 1, 2, .j = 1, 2, that intersect 

interval [0, pZ] = [0, 0.08] have to be identified. Since in this case ( )
11

ZPA  = [0.02, 0.175], ( )
12

ZPA  

= [0.06, 0.225], ( )
21

ZPA  = [0.04, 0.210] and ( )
22

ZPA  = [0.120, 0.270] (see above), only focal sets 

( )
11

ZPA , ( )
12

ZPA  and ( )
21

ZPA  intersect interval [0, 0.08]; then, only focal sets ( )
11

ZPA , ( )
12

ZPA  and ( )
21

ZPA  

and the corresponding probability masses ( )( )11
ZPAm , ( )( )12

ZPAm  and ( )( )21
ZPAm  have to be 
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included in the function ( )( )08.0ZPF  to be maximized. As a consequence, maximization 

problem (13) becomes: 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ){ } ( )( ) ( )( ) ( )( ){ }211211

22211211

max08.0max08.0

:,,,Find

ZPZPZP
ZPZP

DEnv

ZPZPZPZP

AmAmAmFF

AmAmAmAm

++==
 (15) 

subject to the constraints that i) ( )( ) ( )( )1211
ZPZP AmAm +  = ( )( )1

1BPAm  = 0.35, ( )( ) ( )( )2221
ZPZP AmAm +  = 

( )( )2

1BPAm  = 0.65, ( )( ) ( )( )2111
ZPZP AmAm +  = ( )( )1

2BPAm  = 0.45, ( )( ) ( )( )2212
ZPZP AmAm +  = ( )( )2

2BPAm  = 

0.55 and ii) ( )( )11
ZPAm , ( )( )12

ZPAm , ( )( )21
ZPAm , ( )( )22

ZPAm  � 0. The optimization process leads to 

( )( )08.0ZP
DEnvF  = 0.8 with ( )( )11

ZPAm  = 0, ( )( )12
ZPAm  = 0.35, ( )( )21

ZPAm  = 0.45 and ( )( )22
ZPAm  = 0.2. 

Instead, in order to calculate ( ) ( )22.0ZP
DEnvF  by solving minimization problem (14), those focal 

sets among ( )
ij

ZPA , i = 1, 2, .j = 1, 2, that are included in interval [0, pZ] = [0, 0.22] have to be 

identified. Since in this case ( )
11

ZPA  = [0.02, 0.175], ( )
12

ZPA  = [0.06, 0.225], ( )
21

ZPA  = [0.04, 0.210] 

and ( )
22

ZPA  = [0.120, 0.270] (see above), only focal sets ( )
11

ZPA  and ( )
21

ZPA  are included in interval 

[0, 0.22]; then, only ( )
11

ZPA  and ( )
21

ZPA  and the corresponding probability masses ( )( )11
ZPAm  and 

( )( )21
ZPAm  have to be taken into account in the function ( )( )22.0ZPF  to be minimized. Then, 

minimization problem (14) becomes: 

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ){ } ( )( ) ( )( ){ }2111

22211211

min22.0min22.0

:,,,Find

ZPZP
ZPZP

DEnv

ZPZPZPZP

AmAmFF

AmAmAmAm

+==
 (16) 

subject to the same constraints as (15). The optimization process leads to ( ) ( )22.0ZP
DEnvF  = 0.45 

with ( )( )11
ZPAm  = 0.15, ( )( )12

ZPAm  = 0.20, ( )( )21
ZPAm  = 0.30 and ( )( )22

ZPAm  = 0.35. 

Finally, it is worth noting that in order to construct the entire CDFs ( )( )Z
ZP

DEnv pF  and ( ) ( )Z
ZP

DEnv pF  

for P(Z), such optimization problems have to be solved for all the values pZ of interest. The 

resulting upper and lower CDFs, ( )ZPF  and ( )ZPF , of the probability (chance) P(Z) of Z = (B1 

�ind B2)
ukn are shown in Figure 3, bottom. 
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Figure 3. Upper (solid lines) and lower (dashed lines) CDFs, ( )ZPF  and ( )ZPF , of the 

probability (chance) P(Z) of the conjunction of two (objectively) independent events B1 and B2 
with probabilities (chances) P(B1) and P(B2) distributed as in Figure 2, under the 

assumptions of independence (top left), total (top right) and unknown (bottom) epistemic 
dependence 

3 CASE STUDY 

In this Section, we present the example FT used for reference. In Section 3.1, the FT structure 

and BEs uncertainties are described; in Section 3.2, the different states of (objective and 

epistemic) dependence between the BEs are summarized; in Section 3.3, the numerical 

indicators used to quantify the effects of such dependences are provided. 

3.1 Fault tree structure and basic events uncertainties 

A simple FT comprised of nBE = 6 BEs {Bi: i = 1, 2, …, nBE = 6} is considered (Figure 4). 

BEs B1, B2 and B3 are linked to event E1 by junction J1 (an OR-gate) and BEs B4, B5 and B6 
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are linked to event E2 by junction J2 (also an OR-gate); finally, events E1 and E2 are linked to 

the Top Event (TE) X by junction J3 (an AND-gate): 

( ) ( )65432121 BBBBBBEEX ∪∪∩∪∪=∩=  (17) 

 
Figure 4. FT structure 

 

Letting ( ){ }6...,,2,1: == BEi niBP  denote the probabilities (chances) of BEs {Bi: i = 1, 2, …, 

nBE = 6}, the probability (chance) P(X) of the TE X is expressed in all generality as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )654321 ,,,,, BPBPBPBPBPBPgXP X= , (18) 

where gX(�) is a deterministic function of i) the FT structure (i.e., the logical connections 

between the BEs) (see Figure 4) and ii) the (possible) objective dependences existing between 

the BEs (see Sections 2 and 3.2). 

It is assumed that ( ){ }6...,,2,1: == BEi niBP  are epistemically-uncertain. Uncertainties about 

( ){ }6,1: =iBP i  are described using lognormal Probability Distribution Functions (PDFs) 

( )( ) ( ){ }6,1:, == iLNpf iiB
BP

i

i σµ  with parameter values {(�i, �i): i = 1, 6} as specified in 

Table I. As an example, B1 and B6 could denote failure of an item (e.g., a mechanical 

component) for which a sufficient amount of informative (failure) data is available for 

statistical analysis and for accurate characterization of the corresponding epistemic 

uncertainty by a precise probability distribution. Differently, uncertainties about 

( ){ }5,3,2: =iBP i  are represented using (trapezoidal) possibility distributions 

( )( ) ( ){ }5,3,2:,,, == idcbaTRAPp iiiiB
BP

i

iπ , with supports {[ai, di]: i = 2, 3, 5} and cores {[bi, 
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ci]: i = 2, 3, 5} as specified in Table I. By way of example, B2, B3 and B5 could denote events 

(e.g., human-error-dominated events) for which no data exists and where the (trapezoidal) 

possibility distributions are constructed based on expert statements alone. Finally, the 

uncertainty about ( )4BP  is described by a finite Dempster-Shafer (DS) structure, i.e., by a set 

of 
4Bn  = 4 intervals (focal elements) ( ) ],[

444

j
B

j

B

j
BP ppA = , j = 1, 2, …, 

4Bn  = 4, each of which is 

assigned a probability mass ( )( )j
BPAm

4
, j = 1, 2, …, 

4Bn  = 4, as specified in Table I. As an 

example, B4 could denote failure of an item (e.g., a protective or automation system, a digital 

instrumentation and control system, a recently-developed technology, …) for which only 

sparse pieces of data exist: in such cases, the available information is much more valuable 

than purely subjective (and often vague) expert judgment, but it is not sufficient for building a 

precise probability distribution. 

Two different cases are considered: ‘large’ (Case A) and ‘small’ (Case B) BE probabilities 

(chances). In Case A, ( ){ }6...,,2,1: == BEi niBP  are of the order of 10-1, whereas in Case B 

they are of the order of 10-3 (Table I). For illustration purposes, Figure 5 shows the 

distributions of ( ){ }6...,,2,1: == BEi niBP , with reference only to Case B. 

( )1BP  
Epistemic uncertainty description Probability distribution 

Distribution shape Lognormal, ( ) ( )
1

1

B

BP pf  = LN(�1, �1) 

Distribution 
parameters 

Case A �1 = -1.6094, �1 = 0.3226 
Case B �1 = -5.8091, �1 = 0.6678 

( )2BP   
Epistemic uncertainty description Possibility distribution 

Distribution shape Trapezoidal, ( ) ( )
2

2

B

BP pπ  = TRAP(a2, b2, c2, d2) 

Distribution 
parameters 

Case A a2 = 1·10-1, b2 = 1.5·10-1, c2 = 2.5·10-1, d2 = 4·10-1 
Case B a2 = 2·10-3, b2 = 3·10-3, c2 = 5·10-3, d2 = 8·10-3 

( )3BP   

Epistemic uncertainty description Possibility distribution 

Distribution shape Trapezoidal, ( ) ( )
3

3

B

BP pπ  = TRAP(a3, b3, c3, d3) 

Distribution 
parameters 

Case A a3 = 2.5·10-1, b3 = 4·10-1, c3 = 4·10-1, d3 = 5·10-1 
Case B a3 = 5·10-3, b3 = 8·10-3, c3 = 8·10-3, d3 = 1·10-2 

( )4BP   
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Epistemic uncertainty description Dempster-Shafer (DS) structure 

Distribution shape ( ) ( )( )( ){ }4...,,2,1:,
444

== B

j

BP

j

BP njAmA  

Distribution 
parameters 

Case A 
{([5·10-2, 2.5·10-1], 0.19), ([1·10-1, 1.5·10-3], 0.33), ([2.5·10-1, 4·10-1], 
0.25), ([2·10-1, 3·10-1], 0.23)} 

Case B 
{([1·10-3, 5·10-3], 0.19), ([2·10-3, 3·10-3], 0.33), ([5·10-3, 8·10-3], 0.25), 
([4·10-3, 6·10-3], 0.23)} 

( )5BP   

Epistemic uncertainty description Possibility distribution 

Distribution shape Trapezoidal, ( ) ( )
5

5

B

BP pπ  = TRAP(a5, b5, c5, d5) 

Distribution 
parameters 

Case A a5 = 5·10-2, b5 = 2·10-1, c5 = 2·10-1, d5 = 4.5·10-3 
Case B a5 = 1·10-3, b5 = 4·10-3, c5 = 4·10-3, d5 = 9·10-3 

( )6BP   

Epistemic uncertainty description Probability distribution 

Distribution shape Lognormal, ( ) ( )
6

6

B

BP pf  = LN(�6, �6) 

Distribution 
parameters 

Case A �6 = -1.3863, �6 = 0.2465 
Case B �6 = -5.2150, �6 = 0.4214 

Table I. Characteristics and parameters of the distributions of ( ){ }6...,,2,1: == BEi niBP  
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Figure 5. Distributions of ( ){ }6...,,2,1: == BEi niBP  for Case B 

3.2 States of dependence considered 

The following states of objective dependence between the BEs of Section 3.1 are considered 

in the analysis (Section 2.1): a) independence (see (1) and (2)), b) perfect (see (3) and (4)), c) 

opposite (see (5) and (6)), d) positive (see (9) and (10)), e) negative (see (11) and (12)) and f) 

unknown dependence (see (7) and (8)). In addition, the following states of epistemic 

dependence between the probabilities (chances) of the BEs of Section 3.1 are considered in 

the analysis (Section 2.2): i) independence, ii) perfect and iii) unknown dependence. 

Two classes of analyses are performed (Section 4): 

1. assuming unknown epistemic dependence (iii. above) between the probabilities 

(chances) of the BEs, the effects of different states (a.-f. above) of objective 

dependence between the BEs are analyzed; 

2. assuming objective independence (a. above) between the BEs, the effects of different 

states (i.-iii. above) of epistemic dependence between the probabilities (chances) of the 

BEs are analyzed. 

Table II summarizes the analyses carried out in the present paper (Section 4) together with the 

corresponding objectives. 

 States of dependence between the BEs  
 Objective (Section 2.1) Epistemic (Section 2.2) Aim of the analysis 

Analysis 1 
(Table III 

a) independence 
b) perfect dependence 

iii) unknown dependence 
- study the effects of different states of objective 
dependence between the BEs of the FT when the state 
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and Section 
4.1) 

c) opposite dependence 
d) positive dependence 
e) negative dependence 
f) unknown dependence 

of epistemic dependence between the probabilities 
(chances) of the BEs is given (in particular, unknown 
epistemic dependence is assumed in the present 
analysis) 

Analysis 2 
(Table III 

and Section 
4.2) 

a) independence 
i) independence 
ii) total (perfect) dependence 
iii) unknown dependence 

- study the effects of different states of epistemic 
dependence between the probabilities (chances) of the 
BEs of the FT when the state of objective dependence 
between the BEs is given (in particular, objective 
independence is assumed in the present analysis) 

Table II. Analyses performed in Section 4, and their relative objectives 
 

For clarity, Table III reports the details of Analyses 1 and 2 (Table II). First, only for 

illustration purposes the effects of different states of (objective and epistemic) dependences 

between BEs {Bi: i = 1, 2, …, nBE = 6} are demonstrated with reference to very simple 

configurations (referred to as C1-C5 in Table III). In particular, events Z = (B1 � B6) (C1), (B1 

� B5) (C2), (B2 � B5) (C3), (B4 ∪  B5) (C4) and (B2 ∪  B3) (C5) are considered in both 

Analyses 1 and 2 to study whether (and how) the effects of different states of (objective and 

epistemic) dependence are influenced by the particular logical connection existing between 

the BEs. Moreover, such analyses are performed in both Case A (namely, ‘large’ BE 

probabilities-chances) and Case B (namely, ‘small’ BE probabilities-chances) to study 

whether (and how) the effects of different states of (objective and epistemic) dependence are 

influenced by the magnitude of the BE probabilities (chances). 

Then, the more realistic case involving the FT of Figure 4 is considered to analyze the effects 

that (objective and epistemic) dependences between BEs {Bi: i = 1, 2, …, nBE = 6} have on 

the probability (chance) P(X) of the TE X (Table III, Configurations T1-T4 of Analysis 1 and 

T1-T3 of Analysis 2). These computations are performed only in Case B (namely, ‘small’ BE 

probabilities-chances) because in realistic safety-critical engineered systems the basic 

components are usually highly reliable and, thus, the corresponding failure probabilities 

(chances) are typically very small. In Analysis 1, Configuration T1 represents the reference, 

baseline case where all the BEs are considered independent. On the opposite, Configuration 

T4 represents the extreme (most conservative) case where no assumptions about the states of 



 25

objective dependence between all the BEs are made. Instead, Configurations T2 and T3 

represent ‘intermediate’ (and more realistic) cases. In particular, in Configuration T2 positive 

objective dependence is assumed between BEs B1 and B6 (i.e., those events representing 

failures of mechanical components): this situation is far from unlikely in real systems and 

may be due to several causes, e.g., i) shared pieces of equipment (e.g., components in 

different systems are fed from the same electrical bus) or ii) physical interactions (e.g., 

failures of some component create extreme environmental stresses, which increase the 

probability-chance of multiple-component failures). Instead, in Configuration T3 unknown 

objective dependence is assumed between BE B4 (i.e., an event representing the failure of a 

protective or automation system) and BE B5 (i.e., an event dominated by a human error): in 

real systems, this situation may occur, e.g., when an operator turns off a protection system 

(event B4) after failing to correctly diagnose the conditions of a plant (event B5). 

Finally, in Analysis 2 only ‘extreme’ situations are considered: in particular, in 

Configurations T1, T2 and T3 states of independence, total (perfect) dependence and 

unknown epistemic dependence, respectively, are assumed between all the probabilities 

(chances) of all the BEs of the FT. 

Analysis 1 – Unknown (ukn) epistemic dependence between the probabilities (chances) of the BEs 
 Configuration Events and corresponding states of objective (obj) dependence Cases 

Simple configurations: 
pairs of Basic Events 
(BEs) 

C1 Z = (B1 ∩ obj B6)
ukn 

obj = ind, perf, opp, ukn (see Section 2.1) A, B 
C2 Z = (B1 ∩ obj B5)

ukn 

C3 Z = (B2 ∩ obj B5)
ukn 

C4 Z = (B4 ∪ obj B5)
ukn 

C5 Z = (B2 ∪ obj B3)
ukn 

Top Event (TE) X 

T1 X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]
ukn 

B 
T2 Positive (pos) objective dependence between B1 and B6 
T3 X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ukn B5 ∪ ind B6)]

ukn 

T4 X = [(B1 ∪ ukn B2 ∪ ukn B3) ∩ ukn (B4 ∪ ukn B5 ∪ ukn B6)]
ukn 

Analysis 2 – Objective independence (ind) between the BEs 
 Configuration Events and corresponding states of epistemic (epi) dependence Cases 

Simple configurations: 
pairs of Basic Events 
(BEs) 

C1 Z = (B1 ∩ ind B6)
epi 

epi = ind, perf, ukn (see Section 2.2) A, B 
C2 Z = (B1 ∩ ind B5)

epi 
C3 Z = (B2 ∩ ind B5)

epi 
C4 Z = (B4 ∪ ind B5)

epi 
C5 Z = (B2 ∪ ind B3)

epi 

Top Event (TE) X 
T1 X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]

ind 

B 
T2 X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]

perf 
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T3 X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]
ukn 

Table III. Details of the computations performed in Analyses 1 and 2 (Table II). ‘Obj’ = 
‘objective’; ‘epi’ = ‘epistemic’; ‘ind’ = ‘independence’; ‘perf’ = ‘perfect’; ‘opp’ = 

‘opposite’; ‘ukn’ = ‘unknown’ 

3.3 Quantitative indicators 

Two quantitative indicators are here introduced to evaluate the effects that different states of 

(objective and state-of-knowledge) dependence between the BEs (Section 3.2) have on the 

probability (chance) P(Z) of an event Z of interest (e.g., in our case the TE X): i) the interval 

],[ 95.095.0
ZZ

pp  for the 95-th percentile ( ) 95.0ZP  of P(Z), and ii) the relative average distance Zd  

between the upper and lower Cumulative Distribution Functions (CDFs) ( )ZPF  and ( )ZPF . 

The interval ],[ 95.095.0
ZZ

pp  for the 95-th percentile ( ) 95.0ZP  of P(Z) is defined as 

[ ] ( )( ) ( ) ( )( ) ( )]95.0,95.0[,
1195.095.0 −−= ZPZP

ZZ
FFpp , (19) 

where ( )[ ] 1−ZPF  and ( )[ ] 1−ZPF  are the inverse functions of the upper and lower CDFs ( )ZPF  

and ( )ZPF , respectively, of P(Z). It is worth noting that in a risk analysis context, 95.0
Zp  = 

( )( ) ( )95.0
1−ZPF  is the interesting quantity since it guarantees that the probability 

( ) ][ 95.0
ZpZPP ≤  that the true value of P(Z) is lower than 95.0

Zp  = ( )( ) ( )95.0
1−ZPF  is greater than 

or equal to 0.95. Thus, 95.0
Zp  = ( )( ) ( )95.0

1−ZPF  can be interpreted as a conservative assignment 

of the 95-th percentile ( ) 95.0ZP  (i.e., a conservative estimate of risk) with respect to the 

imprecision arising from the input BEs of the FT: obviously, the larger the value of 95.0
Zp , the 

larger the risk associated to the system.  

The relative average distance Zd  between the upper and lower CDFs ( )ZPF  and ( )ZPF  of P(Z) 

is defined as 
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( )

( )[ ]
( )( ) ( ) ( )( ) ( )[ ]

( )[ ]INS

ZPZP

INS

Z

Z
ZPE

dFF

ZPE

dd

d
FF

−−
−

==

1

0

11
1

0

βββββ
, (20) 

where ( )[ ] 1−ZPF  and ( )[ ] 1−ZPF  are defined above; ( ) ( )( ) ( ) ( )( ) ( )βββ 11 −−
−= ZPZP

Z FFd  is the 

width of the interval ],[ ββ
ZZ

pp  for the �-th percentile ( )βZP  of P(Z) (in other words, ( )βZd  

is the distance between the upper and lower CDFs ( )ZPF  and ( )ZPF  of P(Z) computed at 

cumulative probability level � along the real ‘horizontal’ axis; it is straightforward to notice 

that ( )βZd  can take values between 0 and 1 because it is the distance between the upper and 

lower values of the �-th percentile of P(Z), which obviously takes values between 0 and 1); 

finally, ( ) ][ INSZPE  is the expected value of the probability distribution ( ) ( )INS
Z

ZP pf
INS

 

obtained by transforming the upper and lower CDFs ( )ZPF  and ( )ZPF  of P(Z) according to the 

principle of insufficient reason (85). The sampling procedure for estimating ( ) ][ INSZPE  is: 

i. transform the upper and lower CDFs ( )ZPF  and ( )ZPF  of P(Z) into the (unique) 

probability distribution ( ) ( )INS
Z

ZP pf
INS

 (85, 86): 

a. sample NINS random realizations {uk: k = 1, 2, …, NINS} from a uniform 

probability distribution on [0, 1) and consider the corresponding intervals 

( )( ) ( ) ( )( ) ( )],[
11

k
ZP

k
ZP uFuF

−−
, k = 1, 2, …, NINS; 

b. sample a random realization INS
kZp ,  for P(Z)INS from a uniform probability 

distribution on each interval ( )( ) ( ) ( )( ) ( )],[
11

k
ZP

k
ZP uFuF

−−
, k = 1, 2, …, NINS: the 

distribution resulting from the collection of the realizations INS
kZp , , k = 1, 2, …, 

NINS, is an empirical estimate for ( ) ( )INS
Z

ZP pf
INS

); 

ii.  estimate ( ) ][ INSZPE  as �
=

⋅
INSN

k

INS
kZINS pN

1
,1 . 
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Other methods for transforming the upper and lower CDFs ( )ZPF  and ( )ZPF  of P(Z) into a 

(unique) probability distribution are available in (36, 85, 87, 88). 

It is worth noting that the quantity Zd  (20) provides a measure of the average distance (i.e., 

separation) between the upper and lower CDFs ( )ZPF  and ( )ZPF  of P(Z), computed along the 

real ‘horizontal’ axis. In this sense, it is also an indicator of the uncertainty (i.e., imprecision) 

‘contained’ in the distribution of P(Z): the larger the average distance Zd  (20), the larger the 

uncertainty (imprecision) associated to P(Z). 

Finally, notice that the expected value ( ) ][ INSZPE  in (20) is simply chosen as a numerical 

indicator of the approximate “location” of the upper and lower CDFs ( )ZPF  and ( )ZPF  on the 

‘horizontal’ axis: in other words, it is taken as a numerical indicator of the order of magnitude 

of P(Z). In this view, ( ) ][ INSZPE  serves the main purpose of a normalization factor for the 

integral ( )( ) ( ) ( )( ) ( )[ ]F
−−

−
1

0

11
βββ dFF ZPZP , whose magnitude is obviously dependent on the 

magnitude of P(Z) and, thus, on the magnitude of the BE probabilities (chances). In this way, 

such normalization factor allows a fair comparison between values of the distance Zd  (20) 

computed in Cases A and B (Section 3.1), where the BE probabilities (chances) differ by 

several orders of magnitude. 

4 APPLICATION 

In this Section, the methods described in Section 2 for handling dependences in FTA are 

applied to the example of Section 3. In particular, Section 4.1 contains the results of Analysis 

1 (Table III in Section 3.2), whereas Section 4.2 reports the results of Analysis 2 (Table III in 

Section 3.2). 
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4.1 Studying the effects of objective (aleatory) dependences between the 

basic events 

Table IV reports the values of the indicators ],[ 95.095.0
ZZ

pp  (19) and dZ (20) obtained for the 

events Z = (B1 �obj B6)
ukn, (B1 �obj B5)

ukn, (B2 �obj B5)
ukn, (B4 ∪ obj B5)

ukn and (B2 ∪ obj B3)
ukn 

(Configurations C1-C5 of Analysis 1 in Table III) under the assumptions of independence 

(‘obj’ = ‘ ind’), perfect (‘obj’ = ‘ perf’), opposite (‘obj’ = ‘ opp’) and unknown (‘obj’ = ‘ ukn’) 

objective dependence, with reference to Cases A and B (Section 3.1); the estimates of 

( ) ][ INSZPE  are also shown for completeness. In addition, only for illustration purposes Figure 

6 depicts the upper and lower Cumulative Distribution Functions (CDFs) ( )[ ]ukn
obj BBP

F 51∩ , 

( )[ ]ukn
obj BBP

F 54 ∪ , ( )[ ]ukn
obj BBPF 51∩  and ( )[ ]ukn

obj BBPF 54 ∪  obtained for events (B1 �obj B5)
ukn (top) and (B4 

∪ obj B5)
ukn (bottom), respectively, under the assumptions of independence (solid lines), 

perfect (dashed lines), opposite (dotted lines) and unknown (dot-dashed lines) objective 

dependence, with reference to Cases A (left) and B (right). Notice that by construction 

( )[ ]ukn
uknBBPF 51∩  = ( )[ ]ukn

perf BBP
F 51∩  and ( )[ ]ukn

uknBBPF 51∩  = ( )[ ]ukn
oppBBPF 51∩ , whereas ( )[ ]ukn

uknBBPF 54 ∪  = 

( )[ ]ukn
oppBBP

F 54 ∪  and ( )[ ]ukn
uknBBPF 54 ∪  = ( )[ ]ukn

perf BBPF 54 ∪  (see (7) and (8)): however, only for clarity of 

illustration the corresponding lines in Figure 6 are not overlapped. 

 

We start by analyzing those cases where the BEs are linked by AND-gates, i.e., Z = (B1 �obj 

B6)
ukn, (B1 �obj B5)

ukn, (B2 �obj B5)
ukn (Configurations C1-C3 in Table III). It can be seen that 

in Case A the upper bounds ( )
95.0

61
ukn

obj BB
p

∩
, ( )

95.0

51
ukn

obj BB
p

∩
 and ( )

95.0

52
ukn

obj BB
p

∩
 of the 95-th percentiles 

( )[ ] 95.0

61
ukn

obj BBP ∩ , ( )[ ] 95.0

51
ukn

obj BBP ∩  and ( )[ ] 95.0

52
ukn

obj BBP ∩  are 0.1528, 0.1557 and 

0.1760, respectively, under the assumption of independence, whereas they are 0.3461, 0.3462 

and 0.3941, respectively, under the assumption of unknown dependence. Thus, the 
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assumption of independence would lead to underestimating the upper bounds of the 95-th 

quantiles (and, thus, the risk associated to the system) by 2.27, 2.22 and 2.24 times, 

respectively. These considerations are reflected also by the analysis of the relative average 

distances ( )ukn
obj BB

d
61∩

, ( )ukn
obj BB

d
51∩

 and ( )ukn
obj BB

d
52∩

 between the upper and lower CDFs 

( )[ ]ukn
obj BBP

F 61∩ , ( )[ ]ukn
obj BBP

F 51∩ , ( )[ ]ukn
obj BBP

F 52∩ , ( )[ ]ukn
obj BBPF 61∩ , ( )[ ]ukn

obj BBPF 51∩  and ( )[ ]ukn
obj BBPF 52∩ , 

respectively. Actually, as before the assumption of independence leads to underestimating the 

uncertainty (imprecision) ‘contained’ in the distributions of the probabilities 

( ) ][ 61
ukn

obj BBP ∩ , ( ) ][ 51
ukn

obj BBP ∩  and ( ) ][ 52
ukn

obj BBP ∩  by 4.25, 2.61 and 2.65 times, 

respectively. 

This underestimation is much more significant in Case B. Actually, the values of ( )
95.0

61
ukn

obj BB
p

∩
, 

( )
95.0

51
ukn

obj BB
p

∩
 and ( )

95.0

52
ukn

obj BB
p

∩
 are 9.2078·10-5, 6.9995·10-5 and 7.0080·10-5, respectively, under 

the assumption of independence, whereas they are 8.1876·10-3, 8.8002·10-3 and 7.8810·10-3, 

respectively, under the assumption of unknown dependence. Thus, the assumption of 

independence leads to underestimating the upper bounds of the 95-th quantiles (and, thus, the 

risk associated to the system) by 89.02, 125.70 and 112.60 times, respectively. Again, these 

considerations are reflected by the analysis of the relative average distances ( )ukn
obj BB

d
61∩

, 

( )ukn
obj BB

d
51∩

 and ( )ukn
obj BB

d
52∩

. Actually, as before the assumption of independence leads to 

underestimating the uncertainty (imprecision) associated to the distributions of 

( ) ][ 61
ukn

obj BBP ∩ , ( ) ][ 51
ukn

obj BBP ∩  and ( ) ][ 52
ukn

obj BBP ∩  by 136.89, 164.80 and 140.99 

times, respectively. A visual representation of these results is given in Figure 6, top: actually, 

it can be seen that the upper and lower CDFs ( )[ ]ukn
uknBBPF 51∩  and ( )[ ]ukn

uknBBPF 51∩  of 
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( ) ][ 51
ukn

ukn BBP ∩  (dashed lines) completely envelop the upper and lower CDFs ( )[ ]ukn
ind BBPF 51∩  

and ( )[ ]ukn
ind BBPF 51∩  of ( ) ][ 51

ukn
ind BBP ∩  (solid lines) in both Cases A (left) and B (right). 

The facts that i) the assumption of objective independence leads to a consistent 

underestimation of risk and ii) such underestimation is more dramatic in Case B than in Case 

A are explained as follows. The probability (chance) of the conjunction of two independent 

events, say B1 and B5, is given by the product of the corresponding probabilities (chances) 

( )1BP  and ( )5BP , i.e., ( )51 BBP ind∩  = ( )1BP · ( )5BP  (see (1)): thus, if ( )1BP  and ( )5BP  are 

of the order of 10-n, then ( )51 BBP ind∩  is of the order of 10-2n. Instead, if no assumption at all 

about the state of objective dependence between B1 and B5 can be made, only (extreme and 

best possible) lower and upper bounds on ( )51 BBP ∩  can be computed as ( )51 BBP ukn∩  = 

( ) ( )[ ]5151 , BBPBBP uknukn ∩∩  = ( ) ( )[ ]5151 , BBPBBP perfopp ∩∩  = 

( ) ( ){ } ( ) ( ){ }[ ]5151 ,min,0,1max BPBPBPBP −+  (see (7)). In this case, if ( )1BP  and ( )5BP  are 

of the order of 10-n, then the upper bound ( )51 BBP ukn∩  = ( ) ( ){ }51 ,min BPBP  (which 

represents the most conservative estimate of risk) is still of the order of 10-n. As a 

consequence, ( )51 BBP ukn∩  � 10-n is approximately n orders of magnitude larger than 

( )51 BBP ind∩  � 10-2n, which explains also why the difference between ( )51 BBP ind∩  and 

( )51 BBP ukn∩  dramatically increases as ( )1BP  and ( )5BP  decrease (i.e., as n increases). 

 

Different situations arise in the cases where the BEs are linked by OR-gates, i.e., Z = (B4 ∪ obj 

B5)
ukn and (B2 ∪ obj B3)

ukn (Configurations C4 and C5 in Table III). It can be seen that in Case 

A the values of ( )
95.0

54
ukn

obj BB
p

∪
 and ( )

95.0

32
ukn

obj BB
p

∪
 are 0.6670 and 0.6970, respectively, under the 

assumption of independence, whereas they are 0.8401 and 0.8941, respectively, under the 

assumption of unknown dependence. Thus, the assumption of independence leads to 
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underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to the 

system) by about 1.26 and 1.28 times, respectively. These considerations are reflected also by 

the values of the relative average distances ( )ukn
obj BB

d
54 ∪

 and ( )ukn
obj BB

d
32 ∪

 between the upper and 

lower CDFs ( )[ ]ukn
obj BBPF 54 ∪ , ( )[ ]ukn

obj BBPF 32 ∪ , ( )[ ]ukn
obj BBPF 54 ∪  and ( )[ ]ukn

obj BBPF 32 ∪ , respectively. 

Actually, as before, the assumption of independence leads to underestimating the uncertainty 

(imprecision) ‘contained’ in the distributions of ( ) ][ 54
ukn

obj BBP ∪  and ( ) ][ 32
ukn

obj BBP ∪  by 

1.45 and 1.85 times. Notice that the magnitude of such underestimations is not negligible, but 

it is much less relevant than for the cases where BEs are linked by AND-gates. 

In Case B, the values of ( )
95.0

54
ukn

obj BB
p

∪
 and ( )

95.0

32
ukn

obj BB
p

∪
 are 1.6685·10-2 and 1.7772·10-2, 

respectively, under the assumption of independence, whereas they are 1.6763·10-2 and 

1.7881·10-2, respectively, under the assumption of unknown dependence. Thus, in this case 

the assumption of independence leads to a very slight underestimation of the upper bounds of 

the 95-th quantiles (and, thus, of the risk associated to the system), i.e., only by about 1.01 

and 1.02 times, respectively. Instead, the values of the relative average distances ( )ukn
obj BB

d
54 ∪

 

and ( )ukn
obj BB

d
32 ∪

 are 1.0216 and 0.6381, respectively, under the assumption of independence, 

whereas they are 1.1676 and 0.8076, respectively, under the assumption of unknown 

dependence: in other words, the uncertainty (imprecision) associated to distributions of 

( ) ][ 54
ukn

obj BBP ∪  and ( ) ][ 32
ukn

obj BBP ∪  is underestimated by about 1.14 and 1.27 times. 

Thus, although the risk estimates are comparable, the underestimation of the uncertainty 

(imprecision) associated to the distributions of ( ) ][ 54
ukn

obj BBP ∪  and ( ) ][ 32
ukn

obj BBP ∪  is not 

negligible. A visual representation of these results is given in Figure 6, bottom right. Actually, 

it can be seen that the lower CDFs ( )[ ]ukn
uknBBPF 54 ∪  (dashed line) and ( )[ ]ukn

ind BBPF 54 ∪  (solid line) 

(i.e., the CDFs used to estimate the upper bounds of the 95-th quantiles of ( ) ][ 54
ukn

ukn BBP ∪  
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and ( ) ][ 54
ukn

ind BBP ∪ , respectively) almost coincide; on the contrary, the upper CDF 

( )[ ]ukn
uknBBPF 54 ∪  (dashed line) lies consistently above the upper CDF ( )[ ]ukn

ind BBPF 54 ∪  (solid line). 

These results are explained as follows. The probability (chance) of the disjunction of two 

independent events, say B4 and B5, is given by ( )54 BBP ind∪  = ( )4BP  + ( )5BP  – 

( )4BP · ( )5BP  (see (2)). Instead, if no assumptions at all about the state of objective 

dependence between B4 and B5 can be made, only (extreme and best possible) lower and 

upper bounds on ( )54 BBP ∪  can be computed as ( )54 BBP ukn∪  = 

( ) ( )[ ]5454 , BBPBBP uknukn ∪∪  = ( ) ( )[ ]5454 , BBPBBP oppperf ∪∪  = 

( ) ( ){ } ( ) ( ){ }[ ]5454 ,1min,,max BPBPBPBP +  (see (8)). If both ( )4BP  and ( )5BP  are of the order 

of 10-n (with n >> 1, like in the present Case B), then ( )54 BBP ind∪  = ( )4BP  + ( )5BP  – 

( )4BP · ( )5BP  � ( )4BP  + ( )5BP  = 2·10-n. In addition, it is evident that ( )54 BBP ukn∪  = 

( ) ( ){ } ( ) ( ){ }[ ]5454 ,1min,,max BPBPBPBP +  � [10-n, 2·10-n]. This means that if both ( )4BP  and 

( )5BP  are quite small (i.e., if n >> 1), then the value of ( )54 BBP ind∪  is comparable to that of 

( )54 BBP ukn∪ , i.e., ( )54 BBP ind∪  � ( )54 BBP ukn∪  � 2·10-n: in other words, two radically 

different assumptions about the state of objective dependence between B4 and B5 provide a 

comparable risk estimate. On the contrary, the uncertainty (imprecision) ‘contained’ in the 

distributions of ( )54 BBP ind∪  and ( )54 BBP ukn∪  is obviously quite different: actually, the 

interval ( )54 BBP ukn∪  � [10-n, 2·10-n] ‘completely envelops’ the estimate ( )54 BBP ind∪  � 

2·10-n. 

Analysis 1 – Unknown (ukn) epistemic dependence between the probabilities (chances) of the BEs 
Case A  

 State of objective (obj) dependence 
Event Z Indicators Independence (ind) Perfect (perf) Opposite (opp) Unknown (ukn) 

(B1 �obj B6)
ukn 

(C1) 

( )[ ]INSZPE  0.0583 0.1954 0 0.1069 

Zd  0.8634 0.6321 / 3.6672 

[ ]0.95
Z

0.95

Z
p,p  [0.0492, 0.1528] [0.2205, 0.3461] 0 [0, 0.3461] 
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(B1 �obj B5)
ukn 

(C2) 

( )[ ]INSZPE  0.0553 0.1627 0 0.1068 

Zd  1.4779 1.8426 / 3.8630 

[ ]0.95
Z

0.95

Z
p,p  [0.0243, 0.1557] [0.1564, 0.3462] 0 [0, 0.3462] 

(B2 �obj B5)
ukn 

(C3) 

( )[ ]INSZPE  0.0715 0.2068 0 0.1573 

Zd  1.6629 3.0140 / 4.3991 

[ ]0.95
Z

0.95

Z
p,p  [0.0188, 0.1760] [0.1220, 0.3941] 0 [0, 0.3941] 

(B4 ∪ obj B5)
ukn 

(C4) 

( )[ ]INSZPE  0.3933 0.2645 0.4538 0.4219 

Zd  0.9325 0.5493 1.1871 1.3495 

[ ]0.95
Z

0.95

Z
p,p  [0.3100, 0.6670] [0.2500, 0.4401] [0.3302, 0.8401] [0.2500, 0.8401] 

(B2 ∪ obj B3)
ukn 

(C5) 

( )[ ]INSZPE  0.5272 0.3873 0.6251 0.5750 

Zd  0.5161 0.2419 0.7644 0.9542 

[ ]0.95
Z

0.95

Z
p,p  [0.4519, 0.6970] [0.3910, 0.4961] [0.4911, 0.8941] [0.3910, 0.8941] 

Case B 
 State of objective (obj) dependence 

Event Z Indicators Independence (ind) Perfect (perf) Opposite (opp) Unknown (ukn) 

(B1 �obj B6)
ukn 

(C1) 

( )[ ]INSZPE  2.01�10-5 3.00�10-3 0 1.84�10-3 

Zd  1.3339 67.0056 / 182.6408 

[ ]0.95
Z

0.95

Z
p,p  [1.41�10-5, 9.21�10-5] [3.43�10-3, 8.19�10-3] 0 [0, 8.19�10-3] 

(B1 �obj B5)
ukn 

(C2) 

( )[ ]INSZPE  1.84�10-5 2.71�10-3 0 1.83�10-3 

Zd  1.2028 101.9268 / 198.2254 

[ ]0.95
Z

0.95

Z
p,p  [8.75�10-6, 7.85�10-5] [2.56�10-3, 8.80�10-3] 0 [0, 8.80�10-3] 

(B2 �obj B5)
ukn 

(C3) 

( )[ ]INSZPE  2.62�10-5 4.14�10-3 0 3.15�10-3 

Zd  1.7034 164.6245 / 240.1765 

[ ]0.95
Z

0.95

Z
p,p  [5.68�10-6, 7.01�10-5] [2.44�10-3, 7.88�10-3] 0 [0, 7.88�10-3] 

(B4 ∪ obj B5)
ukn 

(C4) 

( )[ ]INSZPE  8.93�10-3 5.19�10-3 9.00�10-3 8.33�10-3 

Zd  1.0216 0.4700 1.0325 1.1676 

[ ]0.95
Z

0.95

Z
p,p  [6.59�10-3, 1.67�10-2] [5.00�10-3, 8.76�10-3] [6.40�10-3, 1.68�10-2] [5.00�10-3, 1.68�10-2] 

(B2 ∪ obj B3)
ukn 

(C5) 

( )[ ]INSZPE  1.25�10-2 7.74�10-3 1.25�10-2 1.15�10-2 

Zd  0.6381 0.2047 0.6468 0.8076 

[ ]0.95
Z

0.95

Z
p,p  [9.83�10-3, 1.78�10-2] [7.82�10-3, 9.92�10-3] [9.82�10-3, 1.79�10-2] [7.82�10-3, 1.79�10-2] 

Table IV. Values of the indicators [ ]95.095.0 , ZZ
pp  (19) and dZ (20) obtained for the simple events 

Z = (B1 �obj B6)
ukn, (B1 �obj B5)

ukn, (B2 �obj B5)
ukn, (B4 ∪ obj B5)

ukn and (B2 ∪ obj B3)
ukn 

(Configurations C1-C5 of Analysis 1 in Table III) under the assumptions of independence, 
perfect, opposite and unknown objective dependence, with reference to Cases A and B; the 

estimates for ( ) ][ INSZPE  are also reported for completeness 
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Figure 6. Upper and lower CDFs 

( )[ ]ukn
obj BBPF 51∩ , ( )[ ]ukn

obj BBPF 54 ∪ , ( )[ ]ukn
obj BBPF 51∩  and 

( )[ ]ukn
obj BBPF 54 ∪  obtained for events (B1 �obj B5)

ukn (top) and (B4 ∪ obj B5)
ukn (bottom), 

respectively, under the assumptions of independence (solid lines), perfect (dashed lines), 
opposite (dotted lines) and unknown (dot-dashed lines) objective dependence, with reference 

to Case A (left) and B (right). Top, right: the value ( ) ][ 51
ukn

obj BBP ∩  = 0 in Case B is 

represented out of scale at about 6�10-7 for clarity of illustration 
 

Similar analyses are performed on the probability (chance) P(X) of the TE X of the FT in 

Figure 4. Table V reports the values of the indicators ],[ 95.095.0
XX

pp  (19) and dX (20) obtained 

for P(X) under different assumptions of objective dependence between the BEs 

(Configurations T1-T4 in Table III), with reference to Case B; the estimates for ( ) ][ INSXPE  

are also shown for completeness. For illustration purposes, Figure 7 depicts the upper and 

lower CDFs ( )XPF  and ( )XPF  obtained for P(X) under different assumptions of objective 

dependence between the BEs (Configurations T1-T4 in Table III). 
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These results confirm the considerations drawn by the analysis of the simple Configurations 

C1-C5 in Table III. For example, it can be seen that the values of the upper bound 95.0
Xp  on the 

95-th quantile ( ) 95.0XP  are 7.2275·10-4 and 8.9766·10-3 in Configurations T1 (where all the 

BEs are considered independent) and T2 (where BEs B1 and B6 are considered positively 

dependent). This means that neglecting an hypothetical state of positive dependence between 

only one pair of BEs linked by an AND-gate is sufficient for underestimating the upper bound 

95.0
Xp  of the 95-th quantile ( ) 95.0XP  (and, thus, the risk associated to the system) by 12.42 

times. On the contrary, in Configuration T3 (where no indication at all about the state of 

objective dependence between BEs B4 and B5 is available), the value of 95.0
Xp  is 7.7580·10-4: 

thus, in this case even assuming unknown objective dependence between a couple of BEs 

linked by an OR-gate leads to overestimating the risk associated to the system only by about 

1.07 times with respect to the ‘baseline’ assumption of independence. Finally, Configuration 

T4 represents the ‘extreme’ case where unknown objective dependence is assumed between 

all the BEs of the FT: notice that since in the present Analysis 1 unknown epistemic 

dependence is also assumed between the probabilities (chances) of all the BEs, Configuration 

T4 provides the most ‘uncertain’ and, thus, conservative estimate for P(X). Actually, the 

values of 95.0
Xp  and dX are 2.5923·10-2 and 72.7040, respectively, i.e., 35.87 and 44.14 times 

larger than those obtained under the ‘baseline’ assumption of objective independence between 

all the BEs (Configuration T1). 

Analysis 1 – Unknown epistemic dependence between the probabilities (chances) of the BEs 
Case B 

 Indicators 
Top Event (TE) X (configuration, Table III) ( )[ ]INSXPE  Xd  [ ]0.95

X

0.95

X
p,p  

X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]
ukn (T1) 2.8725�10-4 1.6472 [7.3617�10-5, 7.2275�10-4] 

Positive (pos) objective dependence between B1 and B6 (T2) 2.2574�10-3 15.3945 [6.5629�10-5, 8.9766�10-3] 

X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ukn B5 ∪ ind B6)]
ukn (T3) 2.8998�10-4 1.7324 [6.1237�10-5, 7.7580�10-4] 

X = [(B1 ∪ ukn B2 ∪ ukn B3) ∩ ukn (B4 ∪ ukn B5 ∪ ukn B6)]
ukn (T4) 1.0463�10-2 72.7040 [3.5735�10-5, 2.5923�10-2] 
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Table V. Values of the indicators ],[ 95.095.0
XX

pp  (19) and dX (20) obtained for P(X) under 

different assumptions of objective dependence between the BEs (Configurations T1-T4 in 

Table III), with reference to Case B; the estimates for ( ) ][ INSXPE  are also reported 
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Figure 7. Upper and lower CDFs ( )XPF  and ( )XPF  obtained for P(X), with reference to Case 
B under different assumptions of objective dependence between the BEs (Configurations T1-
T4 in Table III). The value P(X) = 0 is represented out of scale at about 1�10-5 for clarity of 

illustration 
 

Some considerations are in order with respect to the results obtained. It has been shown that 

the assumption of objective independence between BEs linked by AND-gates very often leads 

to a significant underestimation of i) the risk associated to the system (here represented by the 

upper bound 95.0
Xp  of the 95-th quantile ( ) 95.0XP  of P(X)) and ii) the uncertainty (imprecision) 

‘contained’ in the distribution of P(X) (here represented by the relative average distance dX 

between the upper and lower CDFs ( )XPF  and ( )XPF  of the TE probability-chance P(X)). In 

more detail, it can be seen that when the BE probabilities (chances) are of the order of 10-1 

(like in the present Case A), the assumption of objective independence leads to 

underestimating risk and uncertainty by 2.22–2.27 times and 2.61–4.21 times, respectively, 

with respect to the assumption of unknown objective dependence. Instead, if the BE 

probabilities (chances) are of the order of 10-2–10-3 (like in the present Case B), the 

assumption of objective independence leads to underestimating risk and uncertainty by 89–
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125 times and 136–164 times, respectively, with respect to the assumption of unknown 

objective dependence. Thus, the effects of objective dependences between BEs linked by 

AND-gates becomes more and more dramatic as the BE probabilities (chances) decrease: this 

poses serious concerns in the risk assessment of complex systems where the components are 

highly reliable and, thus, characterized by very small failure probabilities (chances). 

Instead, it has been shown that the assumption of objective independence between BEs linked 

by OR-gates leads to a slight underestimation of both risk and uncertainty. In particular, it can 

be seen that when the BE probabilities (chances) are of the order of 10-1 (like in the present 

Case A), the assumption of objective independence leads to underestimating risk and 

uncertainty by 1.26–1.28 times and 1.45–1.85 times, respectively, with respect to the 

assumption of unknown objective dependence. Instead, if the BE probabilities (chances) are 

of the order of 10-2–10-3 (like in the present Case B), the assumption of objective 

independence does not lead to a remarkable underestimation of risk, whereas it causes a non 

negligible underestimation of uncertainty (i.e., by 1.14–1.27 times with respect to the 

assumption of unknown objective dependence). Based on these considerations, it can be 

concluded that i) the assumption of objective independence between BEs linked by OR-gates 

leads to a slight underestimation of risk only when the BE probabilities (chances) are 

relatively large (e.g., of the order of 10-1) and ii) the relevance of the underestimation of 

uncertainty does not change dramatically as the BE probabilities (chances) change. These 

considerations makes the treatment of dependences between BEs linked by OR-gates much 

less critical than for AND-gates. 
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4.2 Studying the effects of state-of-knowledge (epistemic) dependences 

between the probabilities (chances) of the basic events 

Table VI reports the values of the indicators ],[ 95.095.0
ZZ

pp  (19) and dZ (20) obtained for the 

events Z = (B1 �ind B6)
epi, (B1 �ind B5)

epi, (B2 �ind B5)
epi, (B4 ∪ ind B5)

epi and (B2 ∪ ind B3)
epi 

(Configurations C1-C5 of Analysis 2 in Table III) under the assumptions of independence 

(‘epi’ = ‘ ind’), perfect (‘epi’ = ‘ perf’) and unknown (‘epi’ = ‘ ukn’) epistemic dependence, 

with reference to Cases A and B; the estimates for ( ) ][ INSZPE  are also reported for 

completeness. In addition, only for illustration purposes, Figure 8 shows the upper and lower 

Cumulative Distribution Functions (CDFs) ( )[ ]epi
ind BBPF 51∩ , ( )[ ]epi

ind BBPF 54 ∪ , ( )[ ]epi
ind BBPF 51∩  and 

( )[ ]epi
ind BBPF 54 ∪  obtained for events (B1 �ind B5)

epi (top) and (B4 ∪ ind B5)
epi (bottom), 

respectively, under the assumptions of independence (solid lines), perfect (dashed lines) and 

unknown (dot-dashed lines) epistemic dependence, with reference to Cases A (left) and B 

(right). 

 

We start by analyzing the cases where the BEs are linked by AND-gates and we refer only to 

event Z = (B1 �ind B5)
epi (C2) for brevity sake. It can be seen that in Case A the values of the 

upper bound ( )
95.0

51
epi

ind BB
p

∩
 of the 95-th percentile ( )[ ] 95.0

51
epi

ind BBP ∩  are 0.1216, 0.1467 and 

0.1557 under the assumptions of independence, total (perfect) and unknown epistemic 

dependence, respectively. Thus, the assumption of epistemic independence would lead to 

underestimating the upper bound of the 95-th quantile (and, thus, the risk associated to the 

system) by 1.21 and 1.28 times with respect to the assumptions of total and unknown 

epistemic dependence, respectively; in addition, notice that the assumption of perfect 

dependence produces estimates of the upper bound of the 95-th quantile that are comparable 

to those obtained under the assumption of unknown dependence. These considerations are 
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reflected also by the analysis of the values of the relative average distance ( )epi
ind BB

d
51∩

 between 

the upper and lower CDFs ( )[ ]epi
ind BBPF 51∩  and ( )[ ]epi

ind BBPF 51∩ . Actually, as before the assumption 

of epistemic independence leads to underestimating the uncertainty (imprecision) ‘contained’ 

in the distribution of ( ) ][ 51
epi

ind BBP ∩  by about 1.04 and 1.92 times with respect to the 

assumptions of perfect and unknown epistemic dependence, respectively. Similar 

considerations can be drawn from the analyses of events (B1 �ind B6)
epi and (B2 �ind B5)

epi. 

No significant differences can be found here between the results obtained in Cases A and B. 

For example, in Case B, the assumption of epistemic independence leads to underestimating 

the upper bounds of the 95-th quantiles (and, thus, the risk associated to the system) by 1.287 

and 1.290 times with respect to the assumptions of total and unknown epistemic dependence, 

respectively; in addition, the estimates produced by the assumptions of total and unknown 

epistemic dependence are almost identical as before. 

Very similar considerations (and results) can be drawn by the analysis of those cases where 

the BEs are linked by OR-gates, i.e., Z = (B4 ∪ ind B5)
epi and (B2 ∪ ind B3)

epi (Configurations 

C4 and C5 in Table III) in both Cases A and B: thus, we analyze only event (B4 ∪ ind B5)
epi 

with reference to Case A for brevity. It can be seen that the assumption of independence leads 

to underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to 

the system) by 1.03 and 1.04 times with respect to the assumptions of total and unknown 

dependence, respectively. 

These results are pictorially confirmed by Figure 8: actually, it can be seen that the upper and 

lower CDFs of P[(B1 �ind B5)
epi] (top) and P[(B4 ∪ ind B5)

epi] (bottom) obtained under the 

assumption of unknown epistemic dependence (dot-dashed lines) completely envelop those 

obtained under the assumptions of independence (solid lines) and perfect dependence (dashed 

lines) in both Cases A (left) and B (right) (i.e., they obviously represent more conservative 

estimates of the bounding distributions). In addition, it is worth noting that the lower (resp., 
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upper) CDFs obtained under the assumption of perfect epistemic dependence, i.e., 

( )[ ]perf
ind BBPF 51∩  and ( )[ ]perf

ind BBPF 54 ∪  (resp., ( )[ ]perf
ind BBPF 51∩  and ( )[ ]perf

ind BBPF 54 ∪ ), are very close to 

those produced by the assumption of unknown epistemic dependence, i.e., ( )[ ]ukn
ind BBPF 51∩  and 

( )[ ]ukn
ind BBPF 54 ∪  (resp., ( )[ ]ukn

ind BBPF 51∩  and ( )[ ]ukn
ind BBPF 54 ∪ ) in the region where the cumulative 

probability is very close to the ‘extreme’ upper bound 1 (resp., lower bound 0). In other 

words, the CDFs produced under assumptions of perfect and unknown epistemic dependence 

are almost identical in the range of extreme probabilities-chances (i.e., extreme quantiles) that 

are of particular interest in the risk assessment of complex, highly reliable systems. 

Analysis 2 – Objective independence (ind) between the BEs 
Case A  

 State of epistemic (epi) dependence 
Event Z Indicators Independence (ind) Perfect (perf) Unknown (ukn) 

(B1 �ind B6)
epi 

(C1) 

( )[ ]INSZPE  0.0543 0.0576 0.0583 

Zd  0 0 0.9270 

[ ]0.95
Z

0.95

Z
p,p  0.0974 0.1230 [0.0492, 0.1528] 

(B1 �ind B5)
epi 

(C2) 

( )[ ]INSZPE  0.0474 0.0510 0.0553 

Zd  0.8993 0.9389 1.7242 

[ ]0.95
Z

0.95

Z
p,p  [0.0503, 0.1216] [0.0634, 0.1467] [0.0243, 0.1557] 

(B2 �ind B5)
epi 

(C3) 

( )[ ]INSZPE  0.0609 0.0622 0.0715 

Zd  1.4874 1.5152 1.9523 

[ ]0.95
Z

0.95

Z
p,p  [0.0254, 0.1551] [0.0283, 0.1717] [0.0188, 0.1760] 

(B4 ∪ ind B5)
epi 

(C4) 

( )[ ]INSZPE  0.3817 0.3740 0.3933 

Zd  0.6510 0.6393 0.9608 

[ ]0.95
Z

0.95

Z
p,p  [0.3786, 0.6423] [0.3933, 0.6618] [0.3100, 0.6670] 

(B2 ∪ ind B3)
epi 

(C5) 

( )[ ]INSZPE  0.5192 0.5178 0.5272 

Zd  0.4239 0.4229 0.5241 

[ ]0.95
Z

0.95

Z
p,p  [0.4707, 0.6798] [0.4813, 0.6932] [0.4519, 0.6970] 

Case B  
 State of epistemic (epi) dependence 

Event Z Indicators Independence (ind) Perfect (perf) Unknown (ukn) 

(B1 �ind B6)
epi 

(C1) 

( )[ ]INSZPE  1.62�10-5 2.01�10-5 2.01�10-5 

Zd  0 0 1.6603 

[ ]0.95
Z

0.95

Z
p,p  4.36�10-5 6.72�10-5 [1.41�10-5, 9.21�10-5] 

(B1 �ind B5)
epi 

(C2) 
( )[ ]INSZPE  1.69�10-5 1.96�10-5 1.85�10-5 

Zd  0.9112 0.9943 1.3109 



 42

[ ]0.95
Z

0.95

Z
p,p  [2.38�10-5, 6.09�10-5] [3.45�10-5, 7.85�10-5] [8.75�10-6, 7.88�10-5] 

(B2 �ind B5)
epi 

(C3) 

( )[ ]INSZPE  2.43�10-5 2.49�10-5 2.62�10-5 

Zd  1.4878 1.5251 1.8371 

[ ]0.95
Z

0.95

Z
p,p  [1.01�10-5, 6.19�10-5] [1.13�10-5, 6.87�10-5] [5.68�10-6, 7.01�10-5] 

(B4 ∪ ind B5)
epi 

(C4) 

( )[ ]INSZPE  8.69�10-3 8.65�10-3 8.93�10-3 

Zd  0.7266 0.7237 1.0499 

[ ]0.95
Z

0.95

Z
p,p  [8.38�10-3, 1.59�10-2] [8.82�10-3, 1.67�10-2] [6.59�10-3, 1.67�10-2] 

(B2 ∪ ind B3)
epi 

(C5) 

( )[ ]INSZPE  1.22�10-2 1.22�10-2 1.25�10-2 

Zd  0.5289 0.5298 0.6502 

[ ]0.95
Z

0.95

Z
p,p  [1.05�10-2, 1.72�10-2] [1.07�10-2, 1.76�10-2] [9.83�10-3, 1.78�10-2] 

Table VI. Values of the indicators ],[ 95.095.0
ZZ

pp  (19) and dZ (20) obtained for events Z = (B1 

�ind B6)
epi, (B1 �ind B5)

epi, (B2 �ind B5)
epi, (B4 ∪ ind B5)

epi and (B2 ∪ ind B3)
epi (Configurations 

C1-C5 of Analysis 2 in Table III) under the assumptions of independence, perfect and 
unknown epistemic dependence, with reference to Cases A and B 
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Figure 8. Upper and lower CDFs ( )[ ]epi

ind BBPF 51∩ , ( )[ ]epi
ind BBPF 54 ∪ , ( )[ ]epi

ind BBPF 51∩  and ( )[ ]epi
ind BBPF 54 ∪  

obtained for events (B1 �ind B5)
epi (top) and (B4 ∪ ind B5)

epi (bottom), respectively, under the 
assumptions of independence (solid lines), perfect (dashed lines) and unknown (dot-dashed 

lines) epistemic dependence, with reference to Cases A (left) and B (right) 
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Similar analyses performed on P(X). Table VII reports the values of the indicators 

],[ 95.095.0
XX

pp  (19) and dX (20) obtained for P(X) under different assumptions of epistemic 

dependence between the probabilities (chances) of the BEs (Configurations T1-T3 of 

Analysis 2 in Table III), with reference to Case B; the estimates for ( ) ][ INSXPE  are also 

shown for completeness. For illustration purposes, Figure 9 depicts the upper and lower CDFs 

( )XPF  and ( )XPF  obtained for P(X) assuming independence (solid lines), perfect (dashed 

lines) and unknown (dot-dashed lines) epistemic dependence between the probabilities 

(chances) of all the BEs (Configurations T1-T3 of Analysis 2 in Table III). 

It can be seen that the values of the upper bound 95.0
Xp  of the 95-th percentile ( ) 95.0XP  are 

4.4030·10-4, 6.4111·10-4 and 7.2275·10-4 under the assumptions of independence, total 

dependence and unknown dependence, respectively. Thus, the assumption of independence 

would lead to underestimating the upper bound of the 95-th quantile (and, thus, the risk 

associated to the system) by 1.456 and 1.641 times with respect to the assumptions of total 

and unknown dependence, respectively. This is reflected by the analysis of the indicator dX: 

the assumption of epistemic independence leads to underestimating dX by 1.02 and 2.56 times, 

with respect to the assumptions of total and unknown epistemic dependence. 

Analysis 2 – Objective independence (ind) between the BEs 
Case B 

 Indicators 
Top Event (TE) X (configuration, Table III) ( )[ ]INSXPE  Xd  [ ]0.95

X

0.95

X
p,p  

X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]
ind (T1) 2.1571�10-4 0.8576 [1.9821�10-4, 4.4030�10-4] 

X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]
perf (T2) 2.3119�10-4 0.8781 [3.1555�10-4, 6.4111�10-4] 

X = [(B1 ∪ ind B2 ∪ ind B3) ∩ ind (B4 ∪ ind B5 ∪ ind B6)]
ukn (T3) 2.8725�10-4 2.1935 [7.3617�10-5, 7.2275�10-4] 

Table VII. Values of the indicators ],[ 95.095.0
XX

pp  (19) and dX (20) obtained for P(X) under the 

assumptions of independence, perfect and unknown epistemic dependence (Configurations 
T1-T3 of Analysis 2 in Table III), with reference to Cases A and B 
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Figure 9. Upper and lower CDFs ( )XPF  and ( )XPF  obtained for P(X) under the assumptions 

of independence (solid lines), perfect (dashed lines) and unknown (dot-dashed lines) 
epistemic dependence (Configurations T1-T3 of Analysis 2 in Table III), with reference to 

Case B 
 

Some considerations are in order with respect to the results obtained. It has been shown that 

the assumption of epistemic independence between the probabilities (chances) of BEs linked 

by AND-gates very often leads to an underestimation of i) the risk associated to the system 

(here represented by the upper bound of the 95-th quantile of the TE probability-chance) and 

ii) the ‘imprecision’ contained in the distribution of the TE probability-chance (here 

represented by the relative average distance between the upper and lower CDFs of the TE 

probability-chance). In particular, in the analysis of Configurations C1-C5 it is shown that 

when the BE probabilities (chances) are of the order of 10-1 (like in the present Case A), the 

assumption of epistemic independence leads to underestimating risk and uncertainty by 1.11–

1.57 times and 1.02–1.92 times, respectively, with respect to the assumptions of total and 

unknown epistemic dependence. Similarly, if the BE probabilities (chances) are of the order 

of 10-2–10-3 (like in the present Case B), the assumption of epistemic independence leads to 

underestimating risk and uncertainty by 1.11–2.10 times and 1.03–1.44 times, respectively, 

with respect to the assumptions of total and unknown epistemic dependence. 
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Similar results are obtained for BEs linked by OR-gates. In particular, it can be seen that 

when the BE probabilities (chances) are of the order of 10-1 (like in the present Case A), the 

assumption of independence leads to underestimating risk and uncertainty by 1.02–1.04 times 

and 1.01–1.48 times, respectively, with respect to the assumptions of total and unknown 

epistemic dependence. If the BE probabilities (chances) are of the order of 10-2–10-3 (like in 

the present Case B), the assumption of epistemic independence leads to underestimating risk 

and uncertainty by 1.025–1.05 times and 1.01–1.44 times, respectively, with respect to the 

assumptions of total and unknown epistemic dependence. 

Finally, in the analysis of the probability (chance) of the TE of the FT in Figure 4 it is shown 

that assuming epistemic independence between the probabilities (chances) of all the BEs 

leads to underestimating risk and uncertainty by 1.456–1.641 and 1.02–2.56 times, 

respectively, with respect to the assumptions of total and unknown epistemic dependence. A 

final remark is in order with respect to the fact that in all the cases considered, the 95-th 

quantile estimates produced under the assumption of perfect dependence are comparable to 

those obtained under the hypothesis of unknown dependence. 

On the basis of these considerations, it can be concluded that i) the effects of epistemic 

dependence are in general non negligible (in particular, in the estimation of small 

probabilities-chances and extreme quantiles), but they are quantitatively less relevant and 

critical than those of objective dependence (see the previous Section 4.1); ii) the effects of 

epistemic dependence are not influenced dramatically by the type of logical connection 

existing between the BEs, and iii) the effects of epistemic dependence are not modified 

significantly by the magnitude of the BE probabilities (chances). These considerations 

demonstrate that epistemic dependences cannot be neglected in the risk assessment of 

complex, safety-critical engineering systems (in particular, when small probabilities-chances 
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and extreme quantiles have to be estimated); however, their effects are likely to be 

overwhelmed by those of objective dependences (if present). 

5 DISCUSSION AND CONCLUSIONS 

In this paper, the effects of objective and state-of-knowledge dependences between the BEs of 

a FT have been quantified. Two types of analyses have been carried out on a FT with six BEs: 

1. assuming unknown epistemic dependence between the probabilities (chances) of the 

BEs, the effects of different states of objective dependence between the BEs have been 

quantified; 

2. assuming objective independence between the BEs, the effects of different states of 

epistemic dependence between the probabilities (chances) of the BEs have been 

studied. 

With respect to analysis 1. above, it has been shown that: 

•  the assumption of objective independence between the BEs linked by AND-gates 

always leads to a serious underestimation of i) the risk associated to the system (here 

represented by the upper bound of the 95-th quantile of the TE probability-chance) 

and ii) the uncertainty (imprecision) ‘contained’ in the (distribution of the) TE 

probability-chance (here represented by the relative average distance between the 

upper and lower CDFs of the TE probability-chance) with respect to the assumptions 

of perfect and unknown objective dependence: actually, the corresponding estimates 

may differ even by several orders of magnitude; 

•  this underestimation becomes more and more dramatic as the BE probabilities 

(chances) get smaller: this poses serious concerns in the risk assessment of complex 

systems where the components are highly reliable and, thus, characterized by very 

small failure probabilities (chances); 
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•  the assumption of objective independence between BEs linked by OR-gates may lead 

to a slight underestimation of both risk and the uncertainty. In particular: 

� the assumption of objective independence between BEs leads to a slight 

underestimation of risk only when the BE probabilities (chances) are relatively 

large (e.g., of the order of 10-1); otherwise, when the BE probabilities 

(chances) are quite small (e.g., of the order of 10-2–10-3), the assumption of 

independence produces risk estimates that are comparable even to those 

provided by the assumption of unknown dependence; 

� the assumption of objective independence between BEs always leads to a slight 

underestimation of the uncertainty (imprecision) ‘contained’ in the distribution 

of the TE probability (chance); 

� the effects of objective dependence between BEs linked by OR-gates are not 

influenced dramatically by the magnitude of the BE probabilities (chances). 

Based on the considerations above, it can be concluded that: 

•  the treatment of objective dependences between BEs linked by AND-gates is much 

more critical than for OR-gates; 

•  unknown (or, at least, perfect) objective dependence should be assumed between BEs 

linked by AND-gates, in particular if the corresponding probabilities (chances) are 

very small (e.g., of the order of 10-3–10-2): this leads to obtaining conservative risk 

estimates; 

•  objective dependences between BEs linked by OR-gates can be in general neglected if 

the corresponding probabilities (chances) are very small (e.g., around 10-3-10-2). 

 

With respect to analysis 2. above, it has been shown that: 
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•  the assumption of epistemic independence between the probabilities (chances) of the 

BEs leads to a non negligible underestimation of the risk associated to the system 

(here represented by the upper bound of the 95-th quantile of the TE probability-

chance) with respect to the assumptions of perfect and unknown epistemic 

dependence: this is particularly evident in the estimation of small probabilities 

(chances) and extreme quantiles that are of paramount importance in the risk 

assessment of complex, highly reliable systems; 

•  the estimates for the upper bound of the 95-th quantile of the TE probability (chance) 

produced by the assumptions of perfect and unknown epistemic dependence are 

comparable; 

•  the effects of epistemic dependence between the BE probabilities (chances) are 

quantitatively less relevant and critical than those of objective dependence between 

the BEs: they may differ by several orders of magnitude; 

•  the effects of epistemic dependence are not modified significantly by the magnitude of 

the BE probabilities (chances); 

•  the effects of epistemic dependence are not influenced dramatically by the type of 

logical connection existing between the BEs. 

Based on the considerations above, it can be concluded that: 

•  the conditions of epistemic dependence between some BE probabilities (chances) 

should not be neglected when small probabilities (chances) and extreme quantiles 

have to be estimated: with respect to that, unknown (or, at least, perfect) epistemic 

dependences should be assumed in order to obtain conservative risk estimates; 

•  if objective dependences are also present (e.g., between BEs linked by AND-gates and 

characterized by very small probabilities-chances), the effects of epistemic 

dependence are likely to be overwhelmed by those of objective dependence. 
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