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Risk analysis models describing aleatory (i.e.daan) events contain parameters (e.g., probabilities
failure rates, ...) that are epistemically-uncertaie,, known with poor precision. Whereas aleatory
uncertainty is always described by probability rilisttions, epistemic uncertainty may be
represented in different ways (e.g., probabilistigpossibilistic), depending on the information and
data available.

The work presented in this paper addresses the &fsaccounting for (in)dependence relationships
between epistemically-uncertain parameters. Wheprababilistic representation of epistemic
uncertainty is considered, uncertainty propagatsooarried out by a two-dimensional (or double)
Monte Carlo (MC) simulation approach; instead, whasssibility distributions are used, two
approaches are undertaken: the hybrid MC and Finteyal Analysis (FIA) method and the MC-
based Dempster-Shafer (DS) approach employing gt Random Sets (IRSs). The objectives
are: i) studying the effects of (in)dependence ketwthe epistemically-uncertain parameters of the
aleatory probability distributions (when a probadit/possibilistic representation of epistemic
uncertainty is adopted) and ii) studying the effeicthe probabilistic/possibilistic representatioin
epistemic uncertainty (when the state of dependbateeen the epistemic parameters is defined).
The Dependency Bound Convolution (DBC) approactthen undertaken within a hierarchical
setting of hybrid (probabilistic and possibilistighcertainty propagation, in order to account for a
kinds of (possibly unknown) dependences betweenathgom variables.

The analyses are carried out with reference to twoexamples, built in such a way to allow
performing a fair quantitative comparison betweea methods, and evaluating their rationale and
appropriateness in relation to risk analysis.

Keywords aleatory and epistemic uncertainties, dependentes-dimensional Monte Carlo
method, possibility distributions, fuzzy intervaladysis, dependency bound convolution.
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1. Introduction

In risk analysis, uncertainty is typically distirigied into two types: randomness due to
inherent variability in the system behavior and iiegision due to lack of knowledge and
information on the system. The former type of utaiaty is often referred to as

objective, aleatory, stochastic whereas the laigeoften referred to as subjective,

epistemic, state of knowleddé.
We are interested in the framework of two hierazahlevels of uncertainty, referred

to as “level-2” setting:the models of the aleatory events (e.g., therfaitd a mechanical
component, the variation of its geometrical dimensi and material properties, ...)
contain parameters (e.g., probabilities, failuresa..) that are epistemically-uncertain,
i.e., known with poor precisioh.

In current risk analysis, both aleatory and epigteimcertainties are treated within a
probabilistic framework:®® However, in some situations, the lack of complete
knowledge, information and data impairs the prolistlti representation of epistemic
uncertainty. A number of alternative representafiameworks have been proposed to
handle such casé$! e.g., fuzzy set theory, Dempster-Shafer theory of evideriéé!
possibility theorf??° and interval analysis*!

In this paper, we use probability distributionsdscribe aleatory uncertainty and we
consider both probability and possibility distritmuts to describe the epistemic
uncertainty in the parameters of the (aleatory)ppbility distributions>?® When both
aleatory and epistemic uncertainties are repredelyeprobability distributions, their
propagation is carried out by a two-dimensional (twuble) Monte Carlo (MC)
simulation approach®?3® Instead, when a hybrid (probabilistic and possitii)
uncertainty representation is considered, two aggves are here undertaken: (i) the
hybrid MC and Fuzzy Interval Analysis (FIA) apprbdowvhere the MC techniqd&® is
combined with the extension principle of fuzzy gheory®** within a “level-2”
hierarchical setting**®*! (ii) the Monte Carlo (MC)-based Dempster-ShaferSYD
approach employing Independent Random Sets (IRSshere the possibility
distributions describing the epistemically-uncartparameters are discretized into focal

sets that are randomly and independently sampléd®y*

& This framework of uncertainty modeling is an esien of the so-called “level-1" setting where ramdo
variability (aleatory uncertainty) and lack-of-kniedge (epistemic uncertainty) are not separated twb
hierarchical levelS.

® In the following, this method will be referredas “hybrid MC-FIA approach” for brevity.

¢ In the following, this method will be referredas “MC-based DS-IRS approach” for brevity.



The above mentioned methods encompass several pEgsosn about the
(in)dependence relationships between (i) the epistly-uncertain parameters of the
aleatory probability distributions and (ii) the afery variables. With respect to that, two
issues must be considered for the practical agjgitaf the methods in risk assessment
problems:

() in the hybrid MC-FIA approachtotal dependencels assumed between the
epistemically-uncertain parameters of the aleatorgbability distributions, i.e.,
between thenformation sourceqe.g., the experts or observers) that supply the
corresponding possibility distributiofi$?* on the contrary, in the MC-based DS-IRS
approachrandom set independenbetween the epistemic parameters is impled;

(i) the standard MC method (used to propagate theoajeancertainties in the three
methods mentioned above) presupposadependencebetween the random

variables®®

which may lead to overly optimistic results in kriassessment
problems>*®° |n addition, althouglsomedependences between the random variables
may be accounted for by a MC approach (e.g., thrauapula8’), not all kinds of

possible dependences can be modeled within a M@lsanframework’

The present paper addresses the first issue (ijeabp comparing the double MC,
hybrid MC-FIA and MC-based DS-IRS approaches whth following objectives:

» the study of theffect of dependendetween the epistemically-uncertain parameters
of the aleatory probability distributions when aolpabilistic/non-probabilistic
representatiorof epistemic uncertainty sdopted

« the study of theeffect of the probabilistic/non-probabilisticepresentation of
epistemic uncertainty when thetate of dependencéetween the epistemic
parameters idefined

With respect to the second issue (ii) above, thapep aims atremoving the
assumption oindependencdetweenrandom variablesTo this aim, the Dependency

Bound Convolution (DBC) methdt®®%s combined with the Fuzzy Interval Analysis

(FIA) approach within a “level-2" framework of hyidr(probabilistic and possibilistic)
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uncertainty propagation in order to account fat kinds of (possibly unknown
dependences between the random varidbles.

To the best of the authors’ knowledge, this isfitet time that the above mentioned
issues are systematically analyzed with referenceisk assessment problems where
hybrid uncertainty is separated into two hierarahlevels. To keep the analysis simple
and retain a clear view of each step, the invesitiga are carried out with respect to two
simple examples; in addition, different numericahdicators (e.g., cumulative
distributions, exceedance probabilities, percesitile) are considered to perform a fair,
guantitative comparison between the methods andua&ea their rationale and

appropriateness in relation to risk analysis.

The work benefits from the efforts that have alyedsben done tdformalize
theoreticallythe distinct concepts @éfidependencéhat arise in problems involving both
variability and imprecisioni®’? within the frameworks of both evideridé® and
possibility theorie$’® The practical implications ofdifferent definitions of
independence are illustrated with reference to phebabilistic risk assessment of
engineering systems by Refs. 17, 54 and 55 ondy ‘flevel-1" setting; similar analyses
are performed on environmental cases of soil coim@tinn by Refs. 38 and 52, still in a

“level-1" setting only.

The remainder of the paper is organized as folldwsSSec. 2, the main steps of the
techniques here employed for the joint hierarchicapagation of hybrid uncertainty in a
“level-2” framework (i.e., the two-dimensional M@ybrid MC-FIA, MC-based DS-IRS
and the hybrid DBC-FIA methods) are briefly outlingn Sec. 3, the two academic
examples used to perform the comparison betweenrtbertainty propagation methods
are presented; in Sec. 4, the results of the casm®r are reported and commented; Sec.
5 offers a discussion of the results and some asiwis. Finally, some technical details
about the two-dimensional MC, hybrid MC-FIA, MC-lkeds DS-IRS and DBC-FIA

approaches are given in Appendices A, B, C andgpectively, for completeness.

9 In the following, the hybrid probabilistic and pisilistic approach employing the DBC method (iastef
standard MC simulation) for the propagation of dfeatory uncertainties in a “level-2” setting vl referred
to as “hybrid DBC-FIA approach” for brevity.



2. Computational methods employed in this study for tle joint hierarchical

propagation of hybrid uncertainty in a “level-2” fr amework

In all generality, we consider a model whose outpig a function
Z= f(Y1 Y, e, ,...,Yn) of n variablesY,, j = 1,2....,n, whose uncertainty is described
by probability distributions {pgY (y):i= lZ,...,n}, where 6, ={6,,,6,,,...6,,},
j=12...,n, are the vectors of the corresponding internahmpaters. In a “level-2”
framework, the parameter®, ={6,,,6 , ,...,Hj‘m‘}, j=12...,n, of the probability
distributions p,f: (y,):j=L2..,n are themselves affected by epistemic uncertainty
Depending on the framework adopted to represeneflistemic uncertainty in the

parameters §,, j= 12..,n, different methods for uncertainty propagation are
embraced: when probability distributions” (9,) ={ p’ (ej.l)’ p’ (9,»,2)’---, p’ (Hm )}

j =1, 2,..,n are used, a two-dimensional (or double) MonteldCAVIC) simulation

approach is undertaken (Sec. 2.1); instead, wherssilmbty distributions
z" (0,) ={nﬁ‘-’ (49]'1), 719'2(49]'2),...,719”“ (vam‘ )}j =1, 2, ...,n, are chosen, two options

are here considered: a hybrid MC and Fuzzy Intetvallysis (FIA) approach (Sec. 2.2),
and a MC-based Dempster-Shafer (DS) approach empldgdependent Random Sets
(IRSs) (Sec. 2.3).

2.1. Two-dimensional Monte Carlo method

In extreme synthesis, the two main steps of thegatore aré: 23
(1) sampleN, random realization:ﬁ‘; de=1,2,...,Ne, j =1, 2, ...,n, of the parameter

vectors ¢, from the probability distributionsp” @,),j=1, 2, ...,n (outer loop

processing epistemic uncertainty by MC simulation);

(2) for each realization, = 1, 2, ...,N, of epistemic uncertainty, samph, random

realizationsy", i, = 1, 2, ...,N,, j = 1, 2, ...,n, of the “probabilistic” variables
Y,,j=12..,n, from the probability distributionsp;;(yj), i =1, 2, ..,n,

conditioned at the value6}° of the epistemically-uncertain parametéssampled

at step (1) above (inner loop processing aleatocgrainty by MC simulation).

The output of the algorithm is a set bk empirical Cumulative Distribution

Functions (CDFs) {Fif:ie=],2,...,Ne} for the model output Z; this set
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{Fif ti, = lZ,...,Ne} has to be post-processed in order to obtain theerupnd lower

CDFs, F* and F*, respectively, forZ . Further details are not given here for brevity

sake: the reader is referred to Appendix A.

Notice that the random samplings performed at stgpand (2) above may account
for possibledependencesxisting between thepistemically-uncertain parameteend
between thaleatory variablesrespectively; on the other hand, such dependeaebe
obviously included in the analysienly if they can be modeled within a classical MC
framework® Finally, notice that in this workstandard MC simulation is used to
propagate the aleatory uncertainties in step (By@abwhich presupposésdependence

between theandom variables

2.2.Hybrid Monte Carlo and Fuzzy Interval Analysis appach

In the MC-FIA approach, the propagation of the kytuncertainty is performed by
combining the MC techniqd&® with the extension principle of fuzzy set theBr
within a “level-2” setting by means of the follovgmain stepg?4¢5*

é

(1) select one possibility value ] (0, 1] and the corresponding cut§*, A’+ ..., A",
j = 1, 2, .., n  of the possibility distributions z" @) =

{ﬂﬂ“‘ (6?].,1), ' (Hilz),...,ﬂg“”' (Hj‘m‘ )} of the epistemically-uncertain parametés j
=1, 2, ...,n (outer loop processing epistemic uncertainty byzju interval
analysis);

2) sampleN, random intervals[y* ,y" ], i. = 12..,N_,j = 1, 2, ...,n, of the
ja 1a a a
“probabilistic” variablesY,, j = 1, 2, ...,n, from the probability distributions

{p;‘(yj):j:lz,...,n}, letting the  epistemically-uncertain  parameters

8

0,={6,,.6,,,..6,,} range within the correspondimgcuts A’*, A" ..., A", |

=1, 2, ...,n (found at step (1) above) (inner loop processiegtary uncertainty by
MC simulation);
(3) repeat step (2) above for another possibility valuié (0, 1].

For each intervalA of interest contained in the universe of discolwseof Z , the

output of the algorithm is represented by a set mhusibility functions
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{PIH(A):aD(O,l]} and a set of belief functions{BeIa(A):aD(O,l]}, obtained in

correspondence of thdifferent possibility valuesx [J (0, 1] selected at step (1) above;
these sets of functions are then synthesized li@t@lausibilityPI(A) and belieBel(A) of

1 1
A as J‘PIQ(A)da' and JBeIa(A)da', respectively’**° Further technical details are not
0 0

given here for brevity sake: the reader is refetoefippendix B.

It is worth noting that performing an interval aygb on a-cuts assumesotal
dependencébetween theepistemically-uncertain parametergctually, this procedure
implies strong dependencédetween theinformation sources(e.g., the experts or
observers) that supply the input possibility dimitions, because the sarenfidence
level (1 — a) is chosen to build thex-cuts for all the epistemically-uncertain
parameters® In addition, notice that the random sampling pened in step (2) above
can account fodependencepossibly existing between thadeatory variables on the
other hand, such dependences can be obviouslydedlin the analysienly if they can
be modeled within a classical MC framew&tkn this work,standardMC simulation is
used to propagate the aleatory uncertainties, wbresupposegdependencdetween
therandom variablesFinally, as highlighted in Ref. 23, it is wortbting that this hybrid
propagation method clearly assunedependencéetween thegroup of probabilistic
(i.e., aleatory or randonvariablesand thegroup of thepossibilistic(i.e., epistemically-

uncertainjparametersof the aleatory probability distributions.

2.3.Monte Carlo-based Dempster-Shafer approach emplgyindependent

Random Sets

In the MC-based DS-IRS approach, the possibilistritiutions employed in the hybrid
MC-FIA method are encoded into discrete (focal} set follows:
(i) determineg (nested) focal sets for the generic possibilipicametep as then-cuts

A, :[Qa‘ ,Ea'], t=12,.,q,witha =1>a,>..>a0,>a,,=0;
(ii) build the mass distribution of the focal sets bsigsingm, =Aa, =a, -a,,,.
In extreme synthesis, the main steps of the proeeahe>*>*
(1) sampleN, values{a};}, ie=1,2, ....,Ns, i=12...m, j=1.2,.,n, from the

discrete distributior{(a m M):t =12,...,q : these sampled values represent the

jatr il



a levels of the focal setsA”, A7 ., A", ie = 1, 2, ...,Ng i=212...,m,

j=1,2,..n, of the discretized possibility distributions” (0,) of the parameters
0,, j=12,..,n (outer loop processing epistemic uncertainty by B&pling of

independent discrete focal sets);

(2) for each realization, = 1, 2, ...,N, of epistemic uncertainty (step (1) above), sample

N, random intervals{yi;"*,y‘;‘e] i,=22..,N,,j=1, 2, ...n, of the “probabilistic

4 a

variables Y, j = 1, 2, .., n, from the probability distributions

{p;'(yj): j= l2,...,n} (see step (2) of the procedure of Sec. 2.2) (ifonep

processing aleatory uncertainty by MC simulation).

For each intervalA of interest contained in the universe of discolwseof Z , the

output of the algorithm is represented by a set N plausibility functions

{PL(A):,=22..,N} and a set ofN. belief functions {Bel (A):i,=12...,N},
obtained in correspondence of tihg different combinations ofa levels (i.e., of
independent random sets) sampled at step 1. altogse sets of functions are then

Ne
synthesized into the plausibilif§I(A) and beliefBel(A) of A as PI(A) :Niz Pl (A)

and Bel(A) :NiizNe;BeLe (A), respectivel?**° Further technical details are not given
here for brevity sake: the reader is referred tpeXmlix C.

Notice that, differently from the hybrid MC-FIA apgach, at step (1) above a
different possibility value (resp., confidence levat) (resp., 1 —«) is randomly and
independentlysampled for each epistemically-uncertain parameier, random set
independencé assumed between thpistemically-uncertain parameter&gain, notice
that the random sampling performed in step (2) aboan account fodependences
possibly existing between traeatory variableson the other hand, such dependences
can be obviously included in the analysidy if they can be modeled within a classical
MC framework®® in this work,standardMC simulation is used to propagate the aleatory

uncertainties, which presupposedependencbetween theandom variables
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Finally, in passing notice that all the methodslinatl in Sections 2.1-2.3 employ
standard MC simulation to propagate the aleatorgerninties, which presupposes

independencéetween the random variablé§, j = 1, 2, ...,n. In order to show the

possibility of removing this assumption, for illcetion purposes the Dependency Bound
Convolution (DBC) methad®*®*%is combined with the Fuzzy Interval Analysis (FIA)
approach (Sec. 2.2) in order to accountdtbikinds of (possiblyunknown dependences
between the random variable§, j = 1, 2, ...,n: in other words, the DBC method
replaces standard MC simulation at step (2) ofpteeedure in Sec. 2.2. The technical

details of the corresponding DBC-FIA algorithm acg given here for brevity: the reader
is referred to Appendix D at the end of the paper.

Table 1 summarizes the characteristics of the amhes used in the following to

propagate aleatory and epistemic uncertainties'lieval-2” framework.



10

Table 1. Characteristics of the approaches coresider
to propagate aleatory and epistemic uncertainties i
“level-2” framework

Method Epistemic uncertainty Epistemic uncertainty  State of epistemic State of aleatory
representation propagation dependence dependence
. Random sampling (of
Double F_’rok_)abl_llty probability distributions) Independence/Total Independence
MC distributions by MC dependence
Hybrid Possibility . . Total
MC-EIA distributions Fuzzy interval analysis dependence Independence
Focal sets
MC-based with associated probability ~Random sampling (of Random set Independence
DS-IRS masses (discretized  discrete focal sets) by MC  independence P
possibility distributions)
Hybrid Possibility . . Total Unknown
DBC-FIA distributions Fuzzy interval analysis dependence dependence

3. Case studies

In this Section, the two simple examples adopteblesschmarks to compare the methods
of Sec. 2 are presented. In particular, in Sec.tBe model functions used are described
together with the representation of the aleatory e@pistemic components of uncertainty
in the model input variables; in Sec. 3.2, the expental comparisons carried out

throughout the paper are outlined; finally, in S8@®, the numerical indicators used to
perform a quantitative comparison between the dtairdy propagation techniques are

provided.

3.1. Model functions

Two different model functions are considered:
Z f(Yl’YZ'YS) = Yl wz w3 (1)

1

Z f(Yl'YZ’Y3)=Y1w2/Y3 " (2)

2
The uncertain input variabléq, Y, andY; are described by probability distributions
P, (¥.). P, (y,) and p;(y,) whose parameter vectots, 6, and @, are themselves
affected by epistemic uncertainty. In particuldf, is represented by a lognormal
distribution LN(u1, 01) = LN(81) = LN(fy1, 612), whereu, = 01, is described by a
triangular possibility distributiom*“( 1) = (HM) with corec, = 8 and supportaf,

b,] = [7, 10] ands; = 61, = 1.5;Y, is represented by a lognormal distributld(u,, o,) =
LN(#,) = LN(621, 6»), whereu, = 6,, = 9 ando, = 6,, is described by a triangular
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possibility distribution 77”: (az) = ™ (92’2) with corec, = 1.7 and supporgf, b,] = [1,

2]; finally, Y is represented by a triangular probability disttibn TR(l, m, u) = TR(@s) =
TR(O3,1, 03,2 033), wherel =65, =1,u=633=10 andn = 05, is described by a triangular
possibility distribution7z" (m) = 7 (6

312) with corecs = 4 and supporig, bs] = [2, 9].
Notice that the simplicity of functions (1) and @Jows to retain a clear view of (i)

the steps involved in the comparison of the una@stgoropagation methods of Sec. 2

and (ii) the “practical” interpretations of the uéts in relation to possible risk assessment

applications.

3.2.Experimental comparisons

The following approaches are considered and cordparethe task of hierarchically

propagating aleatory and epistemic uncertainties‘ievel-2” framework:
(i) the two-dimensional (double) MC approach of Set.aghd Appendix A:

(a) assumingotal dependencketween the epistemically uncertain parameters of
the aleatory probability distributions. This choltes been made to perform a
fair comparison with the hybrid Monte Carlo (MC)dalRuzzy Interval Analysis
(FIA) approach, which implicitly assumes by constion total dependence
between the epistemically uncertain parameters$see2.25.

(b) assumingndependencbetween the epistemically uncertain parametetiseof
aleatory probability distributions. This choice lmesen made to perform a fair
comparison with the Monte Carlo (MC)-based DempSteafer (DS) approach
employing Independent Random Sets (IRSs), whichrass independence
between the epistemically uncertain parameters§see2.3);

(ii) the hybrid MC-FIA approach of Sec. 2.2 and Apperigtix
(i) the MC-based DS-IRS approach of Sec. 2.3 and App&hd
(iv) the hybrid DBC-FIA approach of Appendix D.

It is worth remembering that, as highlighted in t8ets 2.1-2.3 and Table 1, in

methods (i)-(iii) abovestandard MC simulation is used to propagate thkatory

uncertainties, which presupposedependencbetween theandom variables

€ It is important to note that the condition of fo&pistemic (or state-of-knowledge) dependence &etw
parameters of risk models is far from unlikely. E@ample, consider the case of a system contamimgmber
of physically distinctbutsimilar/nominally identicacomponents whose failure rates are estimated laysnef
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It is worth noting that the representation of egisic uncertainty here used in the
MC-based DS-IRS approach entirely relies on ghssibilistic representation described
in Sec. 3.1 and employed by the hybrid MC-FIA appio However, in order to tailor
this possibilistic representation to the DS frameuvthe possibility distributions of Sec.
3.1 arediscretizedinto focal sets(or intervals), each of which is assigned a prdtgb

mass as explained in Sec. 2*3n particular, in this papeq = 20 (nested) sets are

determined for the generic possibilistic parametras thea-cuts A, :[Qa‘,ém],

t=12,..,9=20,with a, =1>a,>..>0q,_,, >0q =0 and the corresponding mass

=21
distribution m, is built by assigningm, =Aa, =a, -a,, = 005: these particular
values are chosen for the sake of comparison with hybrid MC-FIA approach
described in detail in Appendix B.

In addition, notice that the probability distributis here used in the two-dimensional
MC approach for the epistemically-uncertain par@mseare obtained by transforming the
possibility distributions of Sec. 3.1 accordinghe principle of insufficient reasdAThe

sampling procedure for transforming the possibitiigtribution n‘*’(H) of the generic

parameterd into a probability distribution according to thsinciple is®*%

(i) sample a random realizatios* for a in [0, 1) and consider the-cut level
A. =10,.6.] ={0: 7°(6)2 a*};
(i) sample a random realizatigh for 8 from a uniform probability distribution or\, .
It is worth noting that other techniques of tramsfation of possibility distributions
into probability density functions have been sugggsin the literature, but the
corresponding details are not given here for byesdtke: the interested reader is referred

to Refs. 41, 82, 84 and 85 for some proposed teabsiqe.g., the converse

transformatiorf’

Two classes of analyses are performed (Sec. 4):

(1) methods (i)-(iii) above areomparedwith the following objectives (Sec. 4.1):

the same data sein such situation, the distributions describihg uncertainty associated to the failure rates
have to be consideredtally dependernit’
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» studying the effects of thstate of dependencbetween the epistemically-
uncertain parameters of the aleatory probabilitystritiutions when a
probabilistic/non-probabilisticepresentatiorof epistemic uncertainty given to
this aim, approaches that represent in ghmneway the epistemic uncertainty
(i.e., in terms of probability or possibility digiutions) but assuméifferent
relationships (i.e., dependence or independencéyele@ the epistemically
uncertain parameters are compared in the followseg. 4.1.1 (in particular,
comparisons are performed between approacheslfidaji.b) above and between
approaches (ii) and (iii) above);

» studying the effects of the probabilistic/non-prbitiatic representationf the
epistemically-uncertain parameters of the aleapsopability distributions when
the state of dependendmetween the epistemically-uncertain parametegsvisi
to this aim, approaches assuming shenedependence relationship between the
epistemically-uncertain parameters but employiffgrentrepresentations of the
epistemic uncertainty are compared in the followBec. 4.1.2 (in particular,
comparisons are performed between approachesfidafii) above and between
approaches (i.b) and (iii) above).

Again, notice that, as highlighted in Sections 2.3-and Table 1, in methods (i)-(iii)
abovestandardMC simulation is used to propagate #ieatoryuncertainties, which
presupposemdependencbetween theandom variables

(2) methods (i) and (iv) above, i.e., the hybrid MCrdaDBC-FIA approaches
(assuming independence and unknown dependence dretive aleatory variables,
respectively) are compared on the academic exangléise previous Sec. 3.1 in
order to show the possibility of (Sec. 4.2):

* removing the assumption of independence betweenl#atory variables (which
is implicit in the adoption oltandard MC sampling for the propagation of
aleatory uncertainty);

« accounting forll kinds of (possiblyunknown dependences between the aleatory
variables (i.e., also those that cannot be modeled within arbitrarily complex
MC sampling frameworks, e.g., copulas).

Table 2 summarizes the analyses carried out inptiesent paper together with the
corresponding objectives.
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Table 2. Comparisons performed in Sec. 4, and their
relative objectives

Comparison between the uncertainty propagation metbds (Sec. 4.1)

Sec. 4.1.1

Representation of epistemic uncertainty
Probabilistic | | Non-probabilistic

Independencg] Double MC (i.b.) MC-based DS-IRS (jii.)

State of epistemic

VS VS

dependence Total
dependence

Double MC (i.a.) Hybrid MC-FIA (ii.)

v v

Objective

Study the effects of the state of dependence betitee
epistemically-uncertain parameters of the alegtoopability
distributions when a probabilistic/non-probabitisti
representation of epistemic uncertainty is given

Sec. 4.1.2

State of epistemic dependence
Independence | Total dependence

Probabilistic

Double MC (i.b.) Double MC (i.a.)

Representation of

VS VS

epistemic uncertainty Non-
probabilistic

MC-based DS-IRS (iii.) Hybrid MC-FIA (ii.)

v Vv

Objective

Study the effects of the probabilistic/non-probiskiit
representation of the epistemically-uncertain patens of the|
aleatory probability distributions when the statelependencs
between the epistemically uncertain parametervéng

Unknown dependences between aleatory variables byBO (Sec. 4.2)

State of dependence between the aleatory variables
Independence Unknown dependence

Methods

Hybrid MC-FIA (i) | vs| Hybrid DBC-FIA (iv.)

Objectives

-Remove the assumption of independence betweealehtoryj|
variables (implicit in the adoption of standard M&mpling fo
the propagation of aleatory uncertainty)

-Account for all kinds of (possibly unknown) dependes
between the aleatory variables (i.e., also thosedénnot be
modeled even within arbitrarily complex MC sampling
frameworks)

3.3. Quantitative indicators

The experimental comparisons described in the pusviSec. 3.2 are carried out with
reference to three quantities of interest in rigsemsment: i) the upper and lower

Cumulative Distribution Functions (CDF$§)* (;) and F* (;) of the model outpuZ;, i
= 1, 2; i) the 2.5-th and 97.5-th percentile$ “*(z) and F*®"*(z) of the CDF F*

ofz,i=1, 2 (i.e., the two CDFs

that envelop 95% of @&Fs ofz); iii) the upper and

lower CDFsF %" (z%) and F*” (2% of the 95-th percentil€** of z,i = 1, 2.
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The calculation of CDFs is of great importance isk rassessment since they

summarize the uncertainty “contained” in the varalof interest, i.e., the model outputs.

In the two-dimensional MC approach (Sec. 2.1),upper and lower CDF§ * (zi) and

F*(z) of z, i = 1, 2, are computed asl?z‘(zi):,maﬁc{Fif‘(zi)} and

=12,

E” (;) = min {FZ (; )} (i.e., as the two “extreme” CDFs that envefdpthe N, CDFs

0=120N, b

generated in correspondence of Merealizations of epistemic uncertainty). Instead, i
the hybrid MC-FIA (Sec. 2.2) and MC-based DS-IRS((S.3) approaches; (;) and
F* (;) of z,i =1, 2, are computed by considering the plausjbéind belief of the set
A= (—oo,zi], i =1, 2:in this respectl?I(Zi D(—oo,zi]) and BeI(Zi D(—oo,zi]) can be
interpreted as bounding cumulative distributiofs (zi) = PI(Zi O (—oo, z ]) and
F*(z) = Bellz, O(-w,z]),i = 1, 2. As highlighted in Ref. 241(Z, 0(-,z]) and
BeI(Zi O (—oo, z ]) are themost precise bounder the true CDFF* (;) ofz,i=1,2.

In order to provide a fair and quantitative comgani between the uncertainty

propagation methods, two synthetic numerical ingdicaare also computed based on the

functions F * (zi) and F* (zi): (a) the (interval for the) probabilityD[Zi > zi‘] that Z;
exceeds a given thresholzi ,i =1, 2 (in the present papezl* =1000 andzg = 35); (b)

the (interval for the) 95-th percenti&® of z,i = 1, 2.

However, it has to be noticed that in the two-disienal MC method the
identification of the upper and lower CDFS* (zi) and F* (zi) of Z,i =1, 2, may not
provide a faithful representation of the rgabbabilistic bounds for F* (zi), i=1, 2

actually, the computation of these CDFs aB” (zi): =r}12§xN{Fif‘ (zi)} and

F* (;)= min {F.Z‘ (; )} may be influenced by the occasional random samptif

i,=12,.,N, b
“extreme” combinations of the epistemic paramet&i&. example, referring to model
functionZ; = Y1-Y,-Y3 (1) above, it can be seen that@mbinationof high values of the

random variable¥; and Y, and Y3 leads to “extremely high” values of the model aitp
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Z;: notice that in a “level-2” framework of uncertiinmodeling, this combination of
high values of therandom variablesY; and Y, and Y; is favored on its turn by a
combination of high values of the correspondapistemically-uncertain parameteis =
6,1 anda, = 6,, and m = 63, respectively. By way of example, it is evideratthf the
epistemically-uncertain mean = 0, , of random variablér; is high, then the values of
the corresponding random variabYe are ‘expectetl to be relatively high (in other
words, relatively high values of random variable are favored. Conversely, an
occasional combination of low values of the rand@mablesY; andY, and Y; produces
“extremely low” values of the model outpwd: again, notice that in a “level-2”
framework of uncertainty modeling, this combinatioh low values of therandom
variablesY; and Y, and Y; is favoredon its turn by a combination of low values of the

correspondingepistemically-uncertain parameters = 6, ; and o, = 0, and m = 6 ,,
respectively. Since the upper and lower CDF$ (zl) and F* (;) are computed by

resorting to “max” and “min” operators (i.e.,lfz'(zl)= max {Fif(zl)} and

i,=1,2,..,N,
F* (zl) = min {Fif (z)}), it may happen that the separation between thesgions (in

i0=12,..N,

other words, the “content” of epistemic uncertairggrried by them) isentirely
determined by the occasional random samplingwd#n only oneof these “extreme”

situations, thus not providing a faithful represgioin of thereal probabilisticboundsfor

F*(z).

In order to overcome this drawback and provide mameust estimates for the

probabilistic bounds ofF%(z), the 2.5-th and 97.5-th percentiles® **(z) and
F2%"%(z) of the CDF F* are here considered. By definitior***(z) and
F2%%(z) are the two CDFs that envelop 95% of the CDFZdf= 1, 2: in particular,
F2%%(z) is such that (0.02Bk)% of theN, CDFs “lie below” (i.e., are lower than or
equal to) F%™*(z ); instead, F* ®"*(z ) is such that [(1 — 0.973Ye]% = (0.025N)%
of the N, CDFs “lie above” (i.e., are larger than or equa)l £%*"(z). The same

“empirical” procedure is employed to identifif> **(z) and F*®"(z) in the MC-
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based DS-IRS approach. Notice that the percenflé$™(z) and F*“"(z) thereby
identified represent more robust estimates of thee" probabilistic bounds of “ (zi)
than the upper and lower CDFs" (zi)= _max {Fe ( )} and F ‘(zi) :icm,'nwc{':iQ (zi )}
because their identification is not based on “mam“noperations, but rather oarder
statistics performed on a (possibly) large numhég of realizations, which is less
influenced by single “outliers” (i.e., by “extremebmbinations of epistemic parameters
values). Instead, in the hybrid MC-FIA approachhspercentile distributions are simply

obtained by considering the belief and plausibifityctions generated in correspondence

of the possibility levela = 1 — 0.95 = 0.05: in particular,F>**(z) =
Bel,,(Z, O(-2.2]) and F* *(z) = Pl,,(z, D(-»,2]).i=1,2.
For the sake of completeness, as before two syotmeimerical indicators are

computed based on the functions*®*(z) and F*®"*(z): (a) the interval
[F 2 05(7 ) 2 05z )] for the probability P[Zi > zi*] thatZ exceeds a given threshold
Z,i=1, 2 (b) the interva[(F z '°975)’1(0.95), (F z '°°25)’1(O.95)] for the 95-th quantile

Z* ofZ,i=1,2.

Finally, the upper and lower CDFE " (z**) and E*” (2°*) of the 95-th quantile
Z** of z,i =1, 2, are considered. In the double MC approadiingle CDFF *"~ (zi""s)
= F=" (") = E*"(2*) for z** is “empirically” constructed using thi, values

{[FZ] 095 N, =12, e} generated in correspondence of lherandom realizations

of epistemic uncertainty: in particulare 2 (%) = —Z:I{[FZ (095)< z° }

el—l

where I{[FZ] (095)< 2095} is 1, if [FZ] (095)< z** and 0, otherwise. Similarly, in
the MC-based DS-IRS approachE?”(z**) = PI*"(z**) and F*"(z**) =
Bel”” (z***) are built using the sets of, values {[Plf ]71(095):ie = lZ,...,Ne} and

{[Belz] 095 i,=12.. } respectively. Instead, in the hybrid MC-FIA apach,
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F7"(2*) = PI*"(2°*) and F*"(2**) = Bel””(z**) are obtained a[s ]sup {a
PIZ [ (095)<2%®

and sup {a}, respectivel§’.
[Bef " (09827

As before, two synthetic numerical indicators apenputed based on the functions
F#" (%) and E*"(2°): (a) the (interval for the) probabilitp{z** > 2| that
exceeds a given thresholrf* , i = 1, 2 (in the present papez,®® = 1000 andzy™ =

55); (b) the (interval for the) 95-th quanti[ i°95]°95 of 2**,i=1,2.

4. Applications

The uncertainty propagation methods described i Sare here applied to the examples
of Sec. 3: in Sec. 4.1, the efficiency of the meth¢) — (iii) is compared in the task of
jointly hierarchically propagating hybrid uncertgirin a “level-2” framework; in Sec.
4.2, the Dependency Bound Convolution (DBC) metand the Fuzzy Interval Analysis
(FIA) approach are joined within a “level-2” framem of hybrid (probabilistic and
possibilistic) uncertainty propagation in the taskaccounting founknowndependences
between the aleatory variables.

4.1. Comparison of the methods for the joint hierarchicgropagation of hybrid
uncertainty in a “level-2” framework

The double Monte Carlo (MC) approach (Sec. 2.1¢, hikbrid MC and Fuzzy Interval
Analysis (FIA) method (Sec. 2.2) and the MC-basedmpster-Shafer approach
employing Independent Random Sets (IRSs) (Sec. &8)here compared with the
following objectives:

» the study of the effect of dependence betweenptstemically-uncertain parameters

of the aleatory probability distributions when aolpabilistic/non-probabilistic
representation of epistemic uncertainty is adof$eat. 4.1.1);

» the study of the effect of the probabilistic/nomipabilistic representation of
epistemic uncertainty when the state of dependdretereen the epistemically-
uncertain parameters is defined (Sec. 4.1.2).

It is worth remembering that, as highlighted in t8sts 2.1-2.3 and Table 1, in
methods (i)-(iii) above(Sec. 3.2)standard MC simulation is used to propagate the

aleatoryuncertainties, which presupposedependencbetween theandom variables
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4.1.1Dependences between the epistemically-uncertatrilalition parameters

We start by comparing approaches (i.a) and (i.lmvabi.e., double MC assuming total
dependence and independence between the unceataimgters, respectively (Sec. 2.1):
the upper and lower Cumulative Distribution Funei¢CDFs)F > (;) and F* (;) i=

1, 2, of the model outpu®;, = Y;-Y> Y3 (1) andZ; = Y;-YJ/Y; (2) obtained by approaches
(i.a) and (i.b) are shown in Fig. 1, left and rigtetspectively.

Model function Z, = Y *Y*Y, - Probabilistic epistemic uncertainty Model function Z, = Y, *Y,/Y, - Probabilistic epistemic uncertainty
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Fig. 1. Comparison of the upper and lower CFF$ (Zi ) and F* (Zi ) i =1, 2, of the model outpu®s =
Y1+ Y2 Y5 (left) andZ, = Y1 Yo/ Y5 (right) obtained by the two-dimensional MC appioamonsidering total
dependence (solid lines) and independence (dastes) between the epistemically-uncertain parammeter

It can be seen that assuming total dependence éetilve uncertain parameters leads
to a larger gap between the upper and lower CDRseomodel outpuf; = Y;- Y2 Yz (1)
than assuming independence (Fig. 1, left); instdegoppositesituation occurs for, =
Y:-Yo/Y5 (2) (Fig. 1, right). This can be easily explaingg analyzing the input-output
functional relationships of the models (1) and (2).

In model functionZ, = Y;-Y,2/Y;3 (2) two of the input random variables (i.%;,andY>)
appear at the numerator, whereas the other {keappears at the denominator of the
expression. In such a case, the highest possibles/dor the model outpuf, are
obtained with aombinationof high values oboth random variable¥; and Y, and low
values of random variabl&s: notice that in a “level-2” framework of uncerttin
modeling, this particular combination of valuestiodé random variable¥;, Y, andYs is
favored on its turn by a combination of high values lwdth epistemically-uncertain
parameterg, = 0, and o, = 65, and low values of epistemically-uncertain parameter
= 03, By way of example, it is evident that if the d@piaically-uncertain meam, = 6; ;

of random variabley; is relatively high, then the values of the cormyting random
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variableY; areexpectedo be relatively high (in other words, relativétigh values of
random variableY; are favored by high values of the corresponding epistemically-
uncertain meap; = 6, ;). Conversely, the lowest possible values for tlueleh outputz,

are obtained with a combination of low valuesboth Y; and Y, and high values ofYs:
notice that in a “level-2” framework of uncertaintyodeling, this particular combination
of values of the random variabl¥g Y, andY; is favoredon its turn by a combination of
low values ofboth epistemically-uncertain parameters= 6;, and o, = 6,, and high
values of epistemically-uncertain parameter= 05, These extreme situations (which
give rise to the largest separation between theuppd lower CDFs, i.e., to the most
“epistemically-uncertain” and, thus, conservatiese), can be obtaineuhly in case (i.b)
above, i.e., assuminghdependencebetween the epistemically-uncertain parameters.
Actually, if a pure random sampling is performedoaigp independent epistemically-
uncertain parametera)l possiblecombinationsof values can be principle generated,
since the entire ranges of variability of the egisically-uncertain parameters can be
explored independently: thus, in some random sasngfl@pistemic uncertainty (step (1)
of Sec. 2.1), high values bbthepistemically-uncertain parametets= 6, ;ando, = 6,
(which favor on their turn high values dfoth random variabled’; and Y,) may be
combined by chance with low values of epistemicalhgertain parametem = 6,
(which favor on their turn low values of random variab¥g; on the contrary, in other
random samples of epistemic uncertainty (step flpec. 2.1), low values oboth
epistemically-uncertain parametets = 6, ; and o, = 6, , (which favor on their turn low
values ofbothrandom variable¥; andY,) may be combined by chance with high values
of epistemically-uncertain parameter= 65, (which favor on their turn high values of
random variabléys). Conversely, such “extreme” situatioo@nnotoccur if there igotal
dependencebetween the epistemically-uncertain parametess, (case (i.a) above).
Actually, in such a case high (resp., low) valuds both epistemically-uncertain
parametersy = 61, ando, = 6, , (which favor on their turn high — resp., low — values of
both random variable¥; andY,) canonly be combined with high (resp., low) values of
epistemically-uncertain parametar= 65, (which favor on their turn high — resp., low —
values of random variablé), giving rise to values of outpi@ which are lower (resp.,

higher) than the highest (resp., lowest) possiibleather words, the separation between
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the upper and lower CDFs produced in case (i.aways smallethan that produced by
the “extreme” situations described above (whichpssibleonly in case (i.b)J.

On the contrary, in model functiod; = Y;-Y,-Ys (1) only multiplications (i.e.,
operations increasing in each place) are presansuth a case, the highest possible
values for the model outpidt; are obtained with aombinationof high values ofr; and
Y, and Yz (which arefavored on their turn by high values of the corresponding
epistemically-uncertain parameters= 6, , and o, = 6,, and m = 65 ,); conversely, the
lowest possible values for model outgytare obtained with a combination of low values
of Y; and Y, and Y; (which arefavoredon their turn by low values of the corresponding
epistemically-uncertain parameters= 6,; and o, = 6,, andm = 63 ,). Although these
“extreme” situations may be obtained (by chancap aéh case (i.b) above (i.e., by
assuming independence between the epistemicallgrtaic parameters), they can be
obtained farmore easily(i.e., more probably) in case (i.a) above (i.ssuaming total
dependence).

These considerations are supported by the value afynthetic numerical indicators

described in Sec. 3.3. Table 3 reports the intsria P[Zi > zi*] and 2,1 =1, 2,

produced by the double MC approaches consideritey ttependence (case i.a.) and

independence (case i.b.) between the epistemigaligrtain parameters. It can be seen
that Pz, >z] and Z* range within [0.0006, 0.0342] and [566.86, 932.13]

respectively, in case (i.a), whereas they rangéimwif0.0004, 0.0092] and [613.58,
816.07], respectively, in case (i.b): thus, for mlodunction (1) the assumption of

independence would lead to underestimating the ruppends of P[Z1 > zl] and Z°

by about 73.1% and 12.5%, respectively. InsteEﬁZ2 > z;] and Z,*® range within

[0.0626, 0.1108] and [32.12, 38.05], respectivety,case (i.a), whereas they range
[0.0318, 0.1640] and [26.36, 45.03], respectivelycase (i.b): thus, for model function

" A straightforward remark is in order. Based on ¢basideration made above about mafiet Y;-Yo/Ys (2),
theeasiestvay to sample these “extreme” combinations of eter values (i.e., to obtain tlegestpossible
separation between the upper and lower CDFs ang, tthe most conservativaesults) would be by
“artificially” imposing total dependence between the epistemically-uncertaianpeters ofY; and Y, and
opposite dependence between the epistemically-uncertaianpeter ofY; and the epistemically-uncertain
parameters dbothY; and Y.
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(2) it is the assumption of total dependence thatl$ to underestimate the upper bounds

of P[ZZ > z;] and Z* by about 32.4% and 15.5%, respectively.

We now move on to compare methods (ii) and (iig,,ithe hybrid MC-FIA (Sec.
2.2) and MC-based DS-IRS (Sec. 2.3) approaches. Zighows the plausibility and

belief functions,PI(Zi D(—oo,zi ]) = F* (;) and BeI(Zi D(—oo,zi ]) =F* (zi), i=1,2,
respectively, of the model outpufs = Y1-Y,-Ysz (1) (left) andZ, = Y;-YJ/Y3 (2) (right)
produced by the hybrid MC-FIA (solid lines) and M@sed DS-IRS (dashed lines)

approaches.

Model function Z, =Y, *Y,*Y, - Non-probabilistic epistemic uncertainty Model function Z, = Y,*Y,/Y, - Non-probabilistic epistemic uncertainty
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Fig. 2. Comparison of the plausibility and beliefiétions, PI(Zi U (— 00, z|]) =F* (Zi) and
BeI(Zi O (— 0,7 5 =FE" & ,i =1, 2, respectively, of the model outpdis= Y:-YYs (left) andz, =
Y1- Y2/ Y3 (right) obtained by hybrid MC-FIA (solid lines) @MC-based DS-IRS (dashed lines) approaches

The results are very similar, i.e., in the presease, the effect of the different
dependence relationships between the epistemiagaligrtain paramenters is not evident.

This is confirmed by the analysis of the correspogdjuantitative indicators: actually,
the intervals for P[Zl >zl‘] and Z** are [0.0013, 0.0199] and [617.55, 868.93],
respectively, in case (ii), whereas they are [00000.0194] and [604.31, 867.44],
respectively, in case (iii); in addition, the intals for P[Z2 > z;] and Z>* are [0.0426,
0.1944] and [28.59, 46.32], respectively, in cdBe Whereas they are [0.0436, 0.1728]

9 Notice that thesameconclusions could be drawn by the analysis ofother quantities of interest considered
in the present paper, i.e., the 2.5-th and 97 fBethentiles of the CDFs of the model outputs aedtpper and
lower) CDFs of the 95-th quantile of the model augp(see Sec. 3.3). A pictorial representation wahs
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and [28.77, 44.71], respectively, in case (iii).l¥for illustration purposes, a pictorial
representation of the operative procedure whichdispted to identify the intervals for

quantilesZ’* and Z,* is given in Fig. 2, left and right, respectivelyith reference to
the hybrid MC-FIA approach (solid lines). The inals for the 9% quantilesZ’* and
Z* of Z; andZ, are operatively identified by the arrows that ovége at 0.95 on the
ordinates of Fig. 2, extend horizontally on the emppnd lower CDFsF * (;) and

F* (;) i =1, 2 (solid lines), and then drop verticallyttee abscissas to produce the

-1

intervals [(F =) (095),(F*)*(095)] = [617.55, 868.93] ang(F > )"(095).(F*)*(095)]
= [28.59, 46.32], respectively. The similarity been the results obtained the hybrid

MC-FIA and MC-based DS-IRS approaches may be expthas follows. In the hybrid
MC-FIA approach, the plausibilitl(A) and belieBel(A) functions of a given s = (—

o, 7] are calculated a§ Pl, (Ada and I Bel, (A)da, respectively, i.e., as thetegrals
0 0

over a [l (0, 1] of thedifferent plausibility and belief functionsPl,(A) and Bel,(A),
respectively, obtained by fuzzy interval analydiglifferentpossibility levelsz [1 (0, 1]
(see Sec. 2.2 and Appendix B for deta&if$f®’ Instead, in the MC-based DS-IRS

N,
approach, PI(A) and BellA) can be computed asPI(A =NLZPIiE(A) and

e Q=L
N,

BeI(A)=Niz Bel (A) respectively, i.e., as tharithmetic meansof the different
e Q=1

plausibility and belief functionsPl, (A) and Bel (A), i = 1, 2, ...,N,, obtained in

correspondence of th, different random combinationsof the independenfocal sets

representing the epistemically-uncertain distribbutiparameters (see Sec. 2.3 and
Appendix C for detailsi** It is arguable that the different assumptions of
(in)dependence between the epistemically-uncegarameters affect the “distributions”
of the plausibility and belief functions generat@éd correspondence of different
“realizations” of epistemic uncertainty: in othemomds, the set of plausibility (resp.,

belief) functionsPl,(A) (resp.,Bel(A)), « [ (0, 1], produced by the hybrid MC-FIA

quantities is not reported here for brevity sake torresponding quantitative indicators are suriz@drin
Table 3.
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method (assuming total dependence) will be subathndifferent from the setPl, (A)
(resp., Bel (A)), ie = 1, 2, ..., N, generated by the MC-based DS-IRS approach

(assuming independence). However, the differentelsa “distributions” of such sets of
functions may beaveraged(i.e., in some casesancelledouf) when the synthetic
indicatorsPI(A) andBel(A) are computed as integrals (in the hybrid MC-FlAthod) or

arithmetic means (in the MC-based DS-IRS approachj the different “realizations” of

epistemic uncertainty.

Then, in order to highlight the effects of the diffint assumptions about the

(in)dependence relationships between the epistdigricacertain parameters, the upper
and lower CDFs,F %" (z**) and E*” (2**), respectively, of the 95-th quanti&® of
the model outpug;, i = 1, 2, are further analyzed. Fig. 3 top showshibending CDFs
for 2> (left) and Z)* (right), produced by the hybrid MC-FIA (solid lisleand the
MC-based DS-IRS (dashed lines) approach; for itigin purposes, Fig. 3 bottom
shows the possibility distributiong®" (zf'%) (left) and 77" (22095) (right) that correspond

095

to the CDFs by means of the relatioRg” (2**) = sup{m*”(z*)} and F*" () =

5555555

1- sup {7'1,z (;0'95)}, i=1,2%

g
755,
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Fig. 3. Top: comparison of the upper and lower COF& (Z.O"%) andF*" (2095) of the 95-th quantile
Z 9% i =1, 2, of the model outpuls = Y1- Y, Ys (left) andZ; = Y;-Y2/Y; (right) obtained by the hybrid MC-
MSFIA (splid lines) and MC-based DS-IRS (dashed )raggproaches. Bottom: possibility distributions
Vi ( 09553 (left) and 77 0955 (rlght) of Z;ZS and 5 respectively, corresponding 6~ E IOQS)
dF (zl =12
It can be seen that the hybrid MC-FIA method predualarger gap between the
upper and lower CDF§ *~ (;095) and F*~ (zfss) than the MC-based DS-IRS approach
in the regions where the cumulative probabilities alose to “extreme” values, i.e.,

where F”(z%) = 0 and F*” (2°*) = 1. This is explained as follows. Notice that the
values of Z** for which F*”(z*) = 0 and E“” (2°*) = 1 correspond to the lower and
upper bounds, respectively, of thecut of levela = 0 of the possibility distribution
/s ( "95) For illustration purposes, by way of example dheut Az of levela = 0.05

of the possibility distributionvz™" (zf'%) produced by the hybrid MC-FIA is indicated by

arrows in Fig. 3 bottom, left; the correspondingiéo and upper bounds, i.e., 548.2 and
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1031.1, respectively, are shown to correspond te tumulative probabilities

7055

E*"(10311) = 1- sup{7*"(10311)} = 1 —a = 1 - 0.05 = 0.95 andF =" (5482) =

22557

sup{nf’m (548.2)} =« = 0.05 in Fig. 3 top, left. All this consideretishould be noticed

ey
that thea-cut A*” of level « = 0 of the possibility distributionzz”(z**) can be
generateanly by “combining” and propagating through the modelddtionZ; = Y1-Y,- Y3
the a-cuts of leveln = 0 ofall the possibilistic parameters = 6, 1, 02 = 0>, andm = 6,

of the model input¥;, Y, andY; (see Sec. 2.2 and Appendix B). Such combination of
values, i.e., § = 0,a, = 0, a3 = 0}, is always“processed” by fuzzy interval analysis in
the hybrid MC-FIA method, due to the underlying tamption of total dependence
between the information sources (e.g., the expertsobservers) that supply the
parameters possibility distributions: actually, Haenepossibility (resp. confidence) level
a (resp., 1 —a) is chosen to build the:-cuts for all the epistemically-uncertain
parameters (see Sec. 2.2 and Appendix B). On tmtrazy, such combination of
possibility (resp., confidence) values, i.ex; £ 0,0, = 0,a3 = 0} (resp., {1a; =1, la, =

1, 1uz = 1}), cannot be obtained easily (i.e., with hjglobability) by the MC-based DS-
IRS approach, which performs a plain random sargpéimongindependenintervals.
This is coherent with the real processes of exgaitation, in that it is difficult to find
different (independent) experts that provide ed@®aabout different uncertain
parameters with the same (and, in this caseima) confidence.

The higher conservatism of the hybrid MC-FIA apmtoés reflected by the values of

the quantitative indicator@[zf% > ;0'95‘] and [Zi°95]°95, i =1, 2, reported in Table 3. For

example, referring only to outpii for brevity, it can be seen tth-I[Zl095 > zf"’“"] ranges

within [0, 0.1500] for the hybrid MC-FIA method, wieas it is 0 for the MC-based DS-
IRS approach: thus, the assumption of independeetweeen the epistemically-uncertain
parameters leads to a dramatic underestimationhef éxceedance probability. In

addition, the quantile[Zf"’s]095 ranges within [668.52, 1031.00] for the hybrid NFGA-
method, whereas it ranges within [641.80, 977.2b]tfie MC-based DS-IRS approach:

again, the assumption of independence leads torestiteating the upper bound of the
guantile by about 5.5%.
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The same conclusions can be drawn by the analyisitheo 2.5-th and 97.5-th
percentilesF* (2 ) and F* *™(z) of the CDFF*(z) of Z, i = 1, 2 (Fig. 4, left and
right). It can be seen that the CDFs produced leyhtybrid MC-FIA approach (solid
lines) completelyenvelopthose produced by the MC-based DS-IRS method édiash
lines) (i.e., they represent more conservativaredtis of the bounding distributions). As
before, this is explained by the difficulty of plaMC simulation of randomly and
independently sampling “extreme” (and more congér@p combinations of possibility

(resp., confidence) leveds(resp., 1 -«) when processing epistemic uncertainty.

£2,0025 FZ,0.025 and FZ,0975 for Z, =Y ,*Y,JY, - Non-probabilistic epistemic uncertainty

and FZ:0975 for z,= \(1*\(2*\(3 - Non-probabilistic epistemic uncertainty
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Fig. 4. Comparison of the 2.5-th and 97.5-th petitenF > 'Oozs(zi) and F* '0975(Zi) of the CDFF * (Zi )
i =1, 2, of the model outpuls = Y:- Y, Ys (left) andZ, = Y;- Y/ Y5 (right) obtained by the hybrid MC-FIA (solid
lines) and MC-based DS-IRS (dashed lines) appreache

Some considerations are in order with respect to risults obtained. The first
comparison (between methods (i.a) and (i.b)) shthas the results produced by the
double MC approach are strongly conditioned by phaeticular characteristics of the
model functiorat hand (i.e., whether the function is increasingll the variables or not,
whether it is monotonic or not, ...): thudifferent states of dependence between the
epistemically-uncertain parameters of the input bphility distributions produce
completelydifferentresults also when applied to teememodel function: for example,
for model (1) (resp., (2)) independence (resp.altalependence) leads to less
conservative results than total dependence (resependence). Thus, in a hypothetic

risk assessment problem the analyst should knorioa the shape of the model function
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in order to guarantee conservatism. This raisésugeconcerns from the point of view of

safety: actually, in the risk assessment of refdtgaritical systems, most of the model

functions adopted are not represented by expliaihematical expressions, but rather by
black boxes (i.e., implicit functions implementeddomplex simulation codes). In such
cases, the analyst must be aware of the fact thptohabilistic representation of

epistemic uncertainty may fail to produce reliadnhel conservative results.

The second comparison (between methods (ii) afjl ghiows instead that the state
of dependence between the parameterdess critical when the representation of
epistemic uncertainty is non-probabilistic: actyalthe CDFs of the model outputs
produced by the hybrid MC-FIA and the MC-based BSlapproaches aramost
identical However, the analysis of other quantitative iatlics (e.g., the distribution of a
given quantile of the output) shows that the hybi@-FIA method produces a larger
separation between the plausibility and belief fioms (i.e., more conservative results)
than the MC-based DS-IRS approach (in particularthe range oémall probabilities
that are of particular interest in the risk assesgnof complex, highly reliable systems);
in addition, contrarily to the double MC approatite results produced by these methods
do notseem to baffectedby the characteristics of the model function atcharhus, in a
non-probabilistic framework of epistemic uncertgingépresentation, the assumption of
total dependence between the epistemically-uncenp@rameters can be considered

alwaysmore conservativéhan that of independence.

4.1.2Probabilistic/possibilistic representation of tbpistemically-uncertain

distribution parameters

In this Section, we perform comparisons betweerraaahes (i.a) and (i) and between
approaches (i.b) and (iii), i.e., approaches tlssume the same state of dependence
between the epistemically-uncertain parameters,répitesent epistemic uncertainty in
different ways: in particular, in both hybrid MC#I(ii) and MC-based DS-IRS (iii)
methods, possibility distributions are employed abhidentify afamily of probability
distributions for the epistemically-uncertain paedens” on the contrary, in the double
MC approach ((i.a) and (i.b)), only single probability distribution is assigned to
represent the epistemic uncertainty associateltetparameters.

" Recall that in the MC-based DS-IRS approach trssipiity distributions are discretized into focsats (see
Sec. 2.3 and Appendix C for details).



29
Fig. 5 shows the upper and lower Cumulative Distitn Functions (CDFs),
F#(z) and F*(z), respectively, of the model outpufs = Y;'Y»Y; (left) andz, =
Y1 Y2/Y3 (right) obtained by the double MC approach assgnital dependence between

the uncertain parameters (case (i.a), solid liaesl) the plausibility and belief functions,
PI(Zi D(—oo,zi ]) = F* (;) and BeI(Zi D(—oo,zi]) = F* (zi), i =1, 2, respectively,
produced by the hybrid MC-FIA approach (case @i@shed lines).

Model function z, = YlkYz'Ys - Total dependence between parameters Model function Z,= Yl*‘(zl\(3 - Total dependence between parameters
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Fig. 5. Comparison of the upper and lower coré (Zi) and EZ‘ (Zi ) i =1, 2, of the model outpuls =
Y1 Yo Y3 (left) andZ, = Y1- Y2/ Y; (right) obtained by a two-dimensional MC methodsidering total
dependence between the epistemically-uncertainmeeas (solid lines) and the hybrid MC-FIA approach
(dashed lines)

It can be seen that for model functi@h = Y1-Y, Y3 (1) (Fig. 5, left) the CDFs
produced by the double MC methadmpletely envelophose obtained by the hybrid
MC-FIA approach. Referring to Sec. 4.1.1, theseltegan be explained as follows. The
highest possible values for the model outpuare obtained with aombinationof high
values of random variableg and Y, and Y3 (which arefavoredon their turn by high
values of the corresponding epistemically-uncerntgirameterg, = 6, ; ando, = 6, , and
m = 63 ,); conversely, the lowest possible values for theleh outpuZ; are obtained with
a combination of low values & andY, and Y; (which arefavoredon their turn by low
values of the corresponding epistemically-uncenpgirameterg,; = 6, ; ando, = 6,, and
m = 63,). In a double MC framework, these “extreme” sitolas (which give rise to the
largest separation between the upper and lower ledives distribution functions, i.e., to

the most conservative case) faeored i.e., are randomly sampled witigh probability
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whentotal dependencé assumed between the epistemically-uncertaiameaters (see

Sec. 4.1.1). Thus, it igery likelythat the upper and lower CDFs produced by the ldoub
MC method assuming total dependence are obtainembrirespondence of “extreme”
combinations of epistemically-uncertain parametgiues (i.e., combinations of values

close to theextreme boundsf the ranges of variability of the epistemicaligeertain

parameters). On the contrary, in the hybrid MC-Fidpproach F? (;) =
PI(Zi D(—oo,zi ]) and F* (zi) = BeI(Zi D(—oo,zi ]) i =1, 2, are obtained gveraging
the different plausibility and belief functionse(i,Pl,(Z L (-, z]) andBel,(z, 1 (o,
z]), respectively) generated at different possipilévelsa [ (0, 1] (in other words, by
averaging the different contributions to the plailty and belief functions produced by
different a-cuts of the epistemic parameters) (see Sec. A2Ampendix B). Although
this procedure is shown to provide thestbounds for the model outpusit obviously
prevents obtaining the “largest” possible boundsually, these extreme bounds are
represented bPly(Z [ (—o, z]) and Bek(Z U (—», z]), i.e., by the plausibility and
belief functions generated in correspondence ottmbination of the:-cuts of levelr =

0 (that are théargestpossible).

The situation is reversed for model functién= Y;-Y,/Y3 (2) (Fig. 5, left). Actually,
in this case, the assumption of total dependenteelee the epistemically-uncertain
parameterpreventsthe double MC method from obtaining conservativaris because
only a limited set of combinations of uncertain parameter valcas be randomly

explored (see the explanation above and Sec. 4.1.1)

As a final comparison, Fig. 6 shows the upper ameet CDFs,F * (;) and F* (Z.)
i =1, 2, respectively, of the model outpdts= Y;-Y,-Y; (left) andZ, = Y;-Y,/Ys (right)
obtained by the two-dimensional MC approach, caréid) independence between the
epistemically-uncertain parameters (solid lines)l dhe MC-based DS-IRS approach

(dashed lines).
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Model function Z1 = Yl*\(z*Y3 - Independence between parameters Model function Z2 = \(1*‘(2/‘(3 - Independence between parameters
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Fig. 6. Comparison of the upper and lower coré (Z‘ ) and EZ‘ (Zi ) i =1, 2, of the model outpuls =
Y1- Y2 Y3 (left) andZ; = Y1- Y2/Y; (right) obtained by the two-dimensional MC appigaeonsidering
independence between the epistemically-uncertaampeters (solid lines) and the MC-based DS-IRS agaghr
(dashed lines)

The results are absolutetpmparablein particular, in the case of model functin
= Y1-Y,- Y3 (Fig. 6, left), the MC-based DS-IRS approach (ddslnes) isslightly more
conservative than the double MC method (solid Jineghereas in the case of model
functionZ, = Y;-Y,/Y3 (Fig. 6, right) the opposite situation occurs. sTeimilarity can be
explained by the common assumption of independdreteveen the epistemically-
uncertain parameters and by the (similar) charsties of the two algorithms used to
propagate the uncertainties. In the MC-based DSdR8oach, the focal sets generated
by the discretization of the possibility distritats are selectedandomly and
independenthby MC (step (2) of the procedure in Sec. 2.3 apgéekdix C). Then, the
minimum and maximum values of the model outputntériest are identified letting the
uncertain parameters rangeependentlwithin the corresponding focal sets: thus, once
the focal sets are selectedl, possiblecombinationsof parameter values can be explored,
since the focal sets of all the parameterseateustivelysearched to maximize/minimize
the model output. Similarly, in the double MC apmrb, a plain random sampling is
performed from the probability distribution of thepistemically-uncertain parameters,
which are considered independent: as a consequéicis independence, in principdd
possiblecombinationsof values of the parameters can be sampled, Higcentire ranges

of variability of the parameters are exploraddomlyandindependently
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In order to highlight the effects of different repentations of epistemic uncertainty,
the upper and lower CDF§ =~ (zi°95) and F*~ (;095), respectively, of the 95-th quantile

Z> of the outputz, i = 1, 2, are further analyzed. Fig. 7 shows thending CDFs
F#"(2**) and F*"(2°) for z, (left) andZ, (right), produced by the hybrid MC-FIA

method (solid lines) together with teagle CDF F*” (;095) produced by the double MC
method (assuming total dependence between the pwreh (dashed line); the
corresponding quantities produced by the MC-bas8dlR5 approach and the double
MC method (assuming independence between the pteeshare not shown here for

brevity sake.
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Fig. 7. Comparison of the upper and lower CDIESZ,‘O% (2‘095) and EZ‘MS (2‘095), respectively, of the 95-th
quantile Ziogs, i =1, 2, of the model outpuls = Y;- Y- Y5 (left) andZ, = Y;-Y2/Y; (right) obtained by the
double MC method assuming total dependence betthegparameters (dashed lines) and the hybrid MC-FIA
approach (solid lines)

Obviously, the advantage of using a non-probalulistpresentation of epistemic
uncertainty lies in the possibility of providimgnservative boundsn the estimates of the
95-th quantile. For example, let us refer to thargitative indicator[ng’s]095 (Table 3):
the point estimategrovided by double MC is 36.65, whereasititerval produced by the
hybrid MC-FIA approach is [33.28, 57.02]. It can §een that the upper bound of the
interval [33.28, 57.02] produced by the hybrid M@xRapproach overestimates by about
37.5% the correspondimpint valuegenerated by the double MC method.
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The higher conservatism of the hybrid MC-FIA apmivas also evidenced by the
analysis of the 2.5-th and 97.5-th percenties “*(z) and F*“(z) of the CDF

F%(z) of the model outpug, i = 1, 2. Fig. 8 shows the CDFE***(z) and

F2%%(z) for z, (left) andZ, (right) produced by the double MC method assuntirna

dependence between the epistemically-uncertaimpess (dashed lines) and the hybrid
MC-FIA approach (solid lines); as before, the cepending quantities produced by the
MC-based DS-IRS approach and the double MC metlasduming independence

between the epistemically-uncertain parametersharahown here for brevity sake.

Z,,0.025 Z,,0.975 =y w
FZ,:0.025 5 (Z,.0.975 ¢ Z, =YY - Total dependence between parameters F2 and F~2 for Z,=Yy \(Z/\fe1 - Total dependence between parameters
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Fig. 8. Comparjson of the 2.5-th and 97.5-th petitem F * ®**(z,) and F * ®"(z,), respectively, of the
CDF F* Ezi ,i =1, 2, of the model outpuBs = Y1- Y, Ys (left) andZ; = Y;- Y2/ Ys (right) obtained by the
double MC method assuming total dependence betthegparameters (dashed lines) and the hybrid MC-FIA
approach (solid lines)

It can be seen that the CDFs produced by the hybdthodenvelopthose obtained
by the purely probabilistic approachétl the cases considered. Particularly dramatic is
the case ofZ, = Y;Y./Y; (Fig. 8, right), where the gaps between the CDFs a
impressively different. This is reflected by thdues of the corresponding quantitative

indicators (Table 3). For the
[(F= )" (095),(F=**)"(095)] of the 95-th quantileZ* are [22.50, 57.02] and

example, estimatesr fdhe interval

[32.24, 37.15], for the hybrid MC-FIA and double M@proaches, respectively: thus, the
width of the interval provided by the double MC trad is 7 times smaller than that

produced by the hybrid MC-FIA approach, which causeerious underestimation of the
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quantile Z**. In addition, the estimates for the interVEﬂ z015(2 ) F 2 '°°25(z;)] of

P[ZZ > z;] are [0.0190, 0.3245] and [0.0625, 0.1050] for #h&-FIA and double MC

approaches, respectively: again, the width of titerval provided by the double MC
method is 7.2 times smaller than that producechbyhiybrid approach, with a significant

underestimation of the exceedance probability.

A final remark is in order with respect to the féswbtained. The first comparison
(between methods (i.a) and (ii)) shows that whesmehs total dependence between the
epistemically-uncertain parameters, the effect iffeint representations of epistemic
uncertainty on the conservatism of the resultotsunivocal, but rather it is related to the
characteristics of the model function at hand. &@mple, in case of model function (1),
a probabilistic representation of epistemic undetyaprovides a larger gap between the
upper and lower CDFs of the model output (i.e., anconservative results) than a non-
probabilistic representation; on the contrary,fardel function (2), the opposite situation
occurs. As a consequence, embracing one represantdtepistemic uncertainty instead
of the other maygignificantly changehe outcome of a decision making process in a risk
assessment problem involving uncertainties: thisfiparamount importance in systems
that are critical from the safety view point, eig.the nuclear, aerospace, chemical and
environmental fields.

The second comparison (between methods (i.b) any ghows instead that when
there is independence between the epistemicallgrtaio parameters, probabilistic and
non-probabilistic representations of epistemic utadety produce absoluteomparable
results: thus, in this case, embracing one reptaten of uncertainty instead of the other
would not change significantly the final decision.

However, it is worth remembering that the consiters made above are valid if the
analyst is interestednly in the estimation of the upper and lower CDFsha& model
output, but they dmot hold in general foother quantities of interest in risk assessment
(e.g., the distributions of a giveguantile or the percentilesof the CDF of the model
output). In these cases, a non-probabilistic repradion of epistemic uncertaingjways
produces more reliable and conservative results gharobabilistic ondyrespectiveof

(i) the state of dependendsetween the epistemically-uncertain parameters(anthe
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characteristics of thmodel functiorat hand. Therefore, even if the double MC approach
purposedly tries to separate variability from imgiseon, in many cases it fails to produce
reliable and conservative results, which can rgieat concerns from the safety point of
view. This leads to conclude that when the state dependence between the
epistemically-uncertain parametersict knownto the analyst (which is far from unlikely
in practice), a non-probabilistic representatiorepistemic uncertainty may represent in

most cases the “safest” choice.

Table 3. Values of the quantitative indicators etS
3.3 produced by the double MC, hybrid MC-FIA and
MC-based DS-IRS approaches in the joint hierarthica
propagation of hybrid uncertainty through the model
functions Z = Y1-Y2- Y3 (1) and Z = Y- Y2/Y;5 (2) of

Sec. 3.1
21 = Y1'Y2'Y3
Methods
o Double MC Double MC MC-based
Quantitative indicators (dep.) (indep.) MC-FIA DS-IRS

E pe P(Z:>z) [0.0006, 0.0342]  [0.0004, 0.0092]  [0.0013, 0.0199][0.0010, 0.0194]

C = 7" [566.86, 932.13]  [613.58, 816.07]  [617.55, 868.93][604.31, 867.44]
F==(z), P(Z:>z) [0.0006, 0.0305]  [0.0010, 0.0125]  [0.0002, 0.0611] [0.000, 0.0378]
F=(z,) Z,°% [606.20, 925.50]  [633.45, 823.70]  [548.10, 1031.00]567.40, 977.25]
Fr g P(Z2,°%52°%%) 0.000 0.000 [0.000, 0.1500] [0.000, 0.000]

' = [Z,°99°% 892.61 809.45 [668.52, 1031.00] [641.80, 977.25]

Zz = Yl'YzlYa
Methods
N Double MC Double MC MC-based
Quantitative indicators (dep.) (indep.) MC-FIA DS-IRS

e po P(Z>2) [0.0626,0.1108]  [0.0318,0.1640]  [0.0426, 0.1944][0.0436, 0.1728]

' = Z,"% [32.12, 38.05] [26.36, 45.03] [28.59, 46.32] [28.42.71]
Feo(z), P(Z>2) [0.0625, 0.1050]  [0.0385,0.1639]  [0.0190, 0.3245][0.0225, 0.2850]
F2om(z) z.0% [32.24, 37.15] [27.69, 43.25] [22.50, 57.02] [23.89.84]
Far g P(Z,"%>2,"%%) 0.000 0.000 [0.000, 0.1500] [0.000, 0.000]

L= [2,°%%% 36.65 41.76 [33.28, 67.02] [32.85, 49.84]

4.2.Inclusion of unknown dependences between the aleataariables in a “level-

2" framework

In this Section, the Dependency Bound ConvolutbBC) method® is framed within a
“level-2” setting of hybrid (i.e., probabilistic dnpossibilistic) uncertainty propagation:
this allows accounting foall the (possiblyunknown dependences that may exist
between the aleatory variablés, Y, and Y; (i.e., the inputs to model functior®y =
Y1'Y> Y3 (1) andZ, = Y;- Yo/ Y3 (2) of Sec. 3.1).
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Fig. 9 shows the upper and lower CDF$ (;) and F* (zi), i =1, 2, of the model

outputsz; (left) andz, (right) obtained by the hybrid MC-FIA (dashed Bp&ec. 2.2 and
Appendix B) and DBC-FIA (solid lines, Appendix D)pmroaches, which assume
independence and unknown dependence, respectbatlyeen the aleatory variablgg

Y, andYs.

*Y,*Y ., - Total dependence between parameters Model function Z_ = Y,*Y_/Y, - Total dependence between parameters

Model function Z, =Y *Y,*Y, 2 17273

Cumulative probability

‘ |
{ | |
o 44
ity 4 Hybrid MC-FIA: Bel(Z, O (<o, 2,) 03r (77 I
| e | | : .
IR Hybrid MC-FIA: PICZ, [ (e, 2,) o2l di Ll e Hybrid MC-FIA: PIZ, O (<o, 2,]) | |
7 ) )
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Fig. 9. Comparison of the upper and lower CDFs" (Zi ) and F* (Zi ) i =1, 2, respectively, of the model

outputsZ; = Y1-Y,-Ys (left) andZ; = Y;-Ya/Y; (right) obtained by the hybrid MC-FIA (dashed e@nd hybrid

DBC-FIA (solid lines) approaches, assuming indepeid and unknown dependence, respectively, between
the aleatory variabley, Y, andY;

As expected, the inclusion afl kinds of possible dependences between the aleatory
variables increases significantly the gap betwéerupper and lower CDFs of the model

outputs (and, correspondingly, the conservatisihefresults). This is confirmed by the
analysis of the quantitative indicatol@{zi > zi'] and Z°*,i = 1, 2. For example, the
intervals for P[Z1 > zl] and Z* are [0.0013, 0.0199] and [617.55, 868.93],
respectively, in case of independence, whereas Hrey[0, 0.3460] and [242.36,
1547.23], respectively, in case of unknown depeoéerthus, the assumption of
independence leads to underestimating the (uppaemdcbof the) exceedance probability
and the quantile by about 17 and 2 times, respagtivn addition, the intervals for
Pz, >Z] and % are [0.0426, 0.1944] and [28.59, 46.32], respebfivin case of
independence, whereas they are [0, 0.5249] and(1004.15], respectively, in case of

unknown dependence: again, the assumption of imdigmee leads to underestimating
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the (upper bound of the) exceedance probability tuedquantile by about 3 and 2.3
times, respectively.

Based on the results above, it can be concludadthkause of the DBC approach
within a “level-2” setting may be very useful toopide aninitial “worst-case” estimate
of the risk associated to the system at hand wlo¢imingis known about theeal state of
dependence between the input variables; howevemany realistic applications this
would lead to excessively conservative (and thissipastic) results that would need to
be refined by acquiring knowledge on the system angarticular, on the actual state of

dependence of the random variables of the model.

5. Discussion and conclusions

In the present paper, the two-dimensional MC, li/MiC-FIA and MC-based DS-IRS
approaches have been considered for the joint roldcal propagation of hybrid
(probabilistic and possibilistic) uncertainty witha “level-2” framework. Two examples
have been taken as reference. Two issues haveaddesssed in the analyses:

(i) the implicit assumptions about the (in)dependemdationships among parameters

subject to epistemic uncertainty (e.g., the hylM@-FIA approach assumes total
dependence, whereas the MC-based DS-IRS methodmessuandom set
independence);

(ii) the use of standard MC sampling to propagate thatay uncertainties, which
implicitly assumes independence between the randoiables.

With respect to issue (i) above, the two-dimendidn@, hybrid MC-FIA and MC-
based DS-IRS approaches have been compared withllweing objectives:

(a) the study of theffects of dependenbetween the epistemically-uncertain
parameters of the aleatory probability distribusiavhen a probabilistic/non-
probabilisticrepresentatiorof epistemic uncertainty edopted
* the comparison between two-dimensional MC appraachssuming total

dependence and independence between the epistigruiceértain parameters,
respectively, has shown that the results produgethé double MC approach
are strongly related to the particular charactessif themodel functiorat hand
(i.e., whether the function is increasing in akk thariables or not, whether it is
monotonic or not, ...): thusdifferent states of dependence between the

epistemically-uncertain parameters of the inputbptolity distributions may
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give rise tocompletelydifferent results also when applied to tseamemodel
function. In particular, when the output is incriegsin each place with respect
to the inputs (e.g., the model function containfy gmroducts), assuming total
dependence between the epistemically-uncertaimpeas leads to a larger gap
between the upper and lower CDFs of the model d¢ufpe., to more
conservative results); on the contrary, when thpuusnot increasing in each
place with respect to the inputs (e.g., the modettion contains both products
and quotients), the opposite situation occursagimption of total dependence
typically produces a consistently smaller gap betwiéhe bounding CDFs of the
model output (i.e., less conservative results);

the comparison between hybrid MC-FIA and MC-bas&lIRS approaches has
shown that the plausibility and belief functionstieé model output produced by
the two approaches are similar: in other words ctiraputation of the upper and
lower CDFs of the output is not significantly infloced by the different
assumptions of (in)dependence between the episaflyrincertain parameters.
This is due to the fact that thtifferent CDFs generated in correspondence of
different (dependent or independent) “realizations” of epigt uncertainty by
the hybrid MC-FIA and MC-based DS-IRS approachesspectively, are
averagedo obtain the plausibility and belief functionstbé model output: such
procedure typically “cancels out” the effect of herticular state of dependence
between the epistemically-uncertain parameters. é¥ew this is not the case
for other quantities of interest in risk assessmerd., the distributions of a
givenquantileor thepercentilesof the CDF of the model output: in these cases,
the hybrid MC-FIA method produces more conservatesults than the MC-
based DS-IRS approach. Actually, in processing tepi€ uncertainty the
assumption ofotal dependencallows selecting “extreme” combinations @f
cuts (e.g., the combination afl the a-cuts with possibility leveb = 0) that
cannot be easily obtained by plain random sampdihindependensets: this
produces conservative estimates, in particular e tange of extreme
cumulative probabilities (i.e., around 0 and 1).

contrarily to probabilistic approaches, the respitsduced by hybrid methods do

notseem to baffectedby the characteristics of the model function atcha
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Based on the considerations above, it can be cdedlthat:

when the representation of epistemic uncertaintyprizbabilistic, the state of
dependence between the epistemically-uncertainnpeteas of the aleatory
probability distributions becomes a critical factor risk-informed decisions
because the effect of different (in)dependenceragtans on the conservatism
of the estimates is closely related to the stractfrthe model function at hand.
This raises serious concerns from the point of wéwafety: actually, in the risk
assessment of real safety-critical systems, martheofnodel functions adopted
are not represented by explicit mathematical exoes, but rather by black
boxes (i.e., implicit functions implemented in cdmpsimulation codes). In such
cases, two options are suggested: (1) the anadyfirms a sensitivity study to
gather the largest amount possible of informatiooud the characteristics of the
model function at hand; on the basis of the indbicet obtained, he/she
“artificially” selects the state of the dependerioetween the epistemically-
uncertain parameters that produces the most catsarwesults; (2) the analyst
assumes independence between the epistemicallytaimc@arameters, which
has been shown to produce more conservative rethdts total dependence
when the model function is not increasing in eatdre with respect to the
inputs;

when the representation of the epistemically-uadertparameters is non-
probabilistic, the state of dependence between dpistemically-uncertain
parameters of the aleatory probability distribusiosless critical However, the
hybrid MC-FIA method may be preferred to the MCdhDS-IRS approach
because it provides more conservative results & dktimation of (i) the
distributions of a given quantile of the model autpnd (i) the percentiles of the
CDF of the output. In addition, this higher consgism is particularly evident in
the range okxtremeprobabilities (i.e., around 0 and 1) that are afgmount
importance in realistic risk assessment applicatimvolving complex, highly

reliable engineering systems.

(b) the study of theeffect of the probabilistic/non-probabilisticepresentationof

epistemic uncertainty when tistate of dependendeetween the epistemically-

uncertain parametersdefined
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the comparison between the MC-based DS-IRS appraauh the two-
dimensional MC approach assuming independence batwe epistemically-
uncertain parameters has shown that in the cadestconsidered the upper and
lower CDFs of the model output produced by the approaches are similar.
This is due to (i) the common assumption of indejemce between the
epistemically-uncertain parameters; (ii) the simitdharacteristics of the two
algorithms used to propagate the uncertainties @iidthe fact that the
computation of the bounding CDFs of the model outiputhe double MC
approach is strongly influenced by the occasiorahdom sampling of
“extreme” combinations of values of the epistenticahcertain parameters;

the comparison between the hybrid MC-FIA method #red two-dimensional
MC approach assuming total dependence betweenpistemically-uncertain
parameters has shown that the conservatism of @belts depends on the
structure of the model function at hand. In patidcuwhen the model function is
not increasing in each place with respect to thmutm (e.g., it contains both
multiplications and quotients), the gap between gheusibility and belief
functions of the output produced by the hybrid ajgh is typically larger than
the gap between the upper and lower CDFs produgethebtwo-dimensional
MC method. This is explained by the fact that i thwo-dimensional MC
approach the assumption of total dependence pevleatrandom sampling of
“extreme” combinations of epistemically-uncertaargmeters. On the contrary,
in the hybrid MC-FIA method, aaxhaustivanterval analysis is performed for
different a-cuts of the possibility distributions: the residt that the hybrid
approach is able to explore larger set of combinationsof epistemically-
uncertain parameter values than the double MC agprahus producing more
conservative results.

Instead, when the model function is increasingaoheplace with respect to the
inputs (e.g., it contains only multiplications),etfopposite situation occurs:
actually, in this case the two-dimensional MC applo assuming total
dependence is very likely to sample “extreme” combons of the

epistemically-uncertain parameters;
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* both non-probabilistic approaches (i.e., the hyii@-FIA and the MC-based
DS-IRS methodsalwayslead to more conservative results than the prdibtbi
approaches (i.e., the two-dimensional MC methodiragsy total dependence
and independence) in the estimation of quantitiks the distribution of a
guantile of the output or the percentiles of theFS»f the output (i.e., those
guantities whose computation is not influenced hg toccasional random
sampling of “extreme” combinations of values of thpistemically-uncertain
parameters). In particular, (i) the non-probabdisapproaches are able to
produce upper and lower distributions for all theagtiles of the output, whereas
the two-dimensional MC method provides onlgiagle probability distribution;
(ii) the percentiles of the CDFs of the output progdd by the non-probabilistic
approachesompletelyenvelopthose generated by the probabilistic approaches.

Based on the considerations above, it can be coedlthat:

» if the analyst is interestezhly in the estimation of the upper and lower CDFs of
the model output:

o when there is total dependence between the epistiéiyauncertain
parameters, a probabilistic representation of tphestemically-uncertain
parameters of the aleatory probability distribusiomay fail to produce
reliable and conservative results, which raisesceors from the point of
view of safety;

o when there is independence between the epistegrizadlertain
parameters, both probabilistic and non-probalilistipresentations of the
epistemically-uncertain parameters may be chosarcesithey may
(occasionally) produceomparableresults;

» if the analyst is interested in the estimation wéwgities like the distribution of a
given quantile or the percentiles of the CDFs @ tlutput, a non-probabilistic
representation of epistemic uncertainty is in gahesuggested because it
provides more conservative results.

The findings of the comparison show that adoptiifeent methods for jointly

propagating aleatory and epistemic uncertaintiey menerate different results and
possibly different decisions in risk problems inkinfy uncertainties: this is of paramount

importance in systems that are critical from théetyaviewpoint, e.g., in the nuclear,
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aerospace, chemical and environmental fields. ttiquéar, it seems advisable to suggest
that, if nothing is known about the dependencetiriahip between the epistemically-
uncertain parameters, one should resort to theihybC-FIA approach because its risk
estimates are more conservative than (or at leasparable to) those obtained by the
double MC approach assuming dependence (or indepeajibetween the epistemically-
uncertain parameters: thus, a non-probabilisticesmtation of epistemic uncertainty

represents in general a “safer” choice.

With respect to issue (ii) above, the DBC method been framed for the first time
within a “level-2” setting of hybrid uncertainty quagation with the objectives of: (a)
removing the assumption of independence betweenaltbatory variables (which is
implicit in the adoption of standard MC sampling fhe propagation of the aleatory
uncertainties) and (b) accounting fatl kinds of (possiblyunknown dependences
between the aleatory variables, i.e., also thos¢ tlannot be modeled even within
arbitrarily complex MC sampling frameworks (e.gopalas). It has been shown that the
upper and lower CDFs of the output produced by ligbrid DBC-FIA approach
completelyenvelopthose obtained by the hybrid MC-FIA method. Baeacdthe results
obtained, it can be concluded that the use of tBE Rpproach within a “level-2” setting
may be very useful to provide anitial “worst-case” estimate of the risk associated & th
system at hand whemothingis known about theeal state of dependence between the
variables; however, in many realistic applicatiotiss would lead to excessively
conservative (and thus pessimistic) results thatrie be refined by acquiring further
knowledge on the system, its model and the retd stfadependence between the random

variables.

The findings and conclusions drawn by the compassperformed in Sec. 4 are

summarized in Table 4 for the sake of clarity.
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Table 4. Comparisons performed in Sec. 4, and their
relative findings

Comparison between the uncertainty propagation methds (Sec. 4.1)

Sec. 4.1.1

Representation of epistemic uncertainty

Probabilistic | | Non-probabilistic
Independencs Double MC (i.b.) MC-based DS-IRS (jii.)
State of epistemi Vs Vs
dependence Total s . ) -

dependence Double MC (i.a.) Hybrid MC-FIA (ii.)

Vv Vv

Findings

Method (i.a) vs (i.b]

- The state of dependence between the paramet@itdal because
its effect on the conservatism of the estimateslated to the
structureof the model function

-Two options are suggested: 1) perforseasitivitystudyto get
information about the model function and “artifitya select the staf]
of dependence that produces the most conservasudts; 2) assum
independencketween the parameters, which is more conservatiye
than total dependence when the model functiontisnecoeasing in
each place with the inputs

Method (i) vs (iii):

- The state of dependencenist socritical (e.g., it has almost no effq
on the upper and lower CDFs of the model output)
-Hybrid MC-FIA may be preferred to MC-based DS-IB&ause it ip
more conservativin the estimation of i) the distributions of a giv
quantile of the model output and ii) the percentdéthe CDF of the)
output (in particular, in the range extreme probabilities.e., aroun
0 and 1)

D

Sec. 4.1.2

State of epistemic dependence

Independence | Total dependence

Probabilistic

Double MC (i.b.) Double MC (i.a.)

Representation of

VS VS

epistemic
uncertainty

Non-
probabilistic

MC-based DS-IRS (iii.) Hybrid MC-FIA (ii.)

v Vv

Findings

General:
-In the estimation of quantities like the distrilout of a given quantilg
or the percentiles of the CDFs of the outputpa-probabilistic
representation of epistemic uncertainty is suggesézause it
provides more conservative results

Method (i.b.) vs (iii)

-In the estimation of the upper and lower CDFshefdutputboth
representations of epistemic uncertainty may beehaince they
may (occasionally) produa®mparableresults

Method (i.a.) vs (ii)

-In the estimation of the upper and lower CDFshefdutput, a
probabilistic representation of epistemic uncetiamay fail to
produce reliable and conservative results
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(Table 4. Continued).

Unknown dependences between aleatory variables byBO (Sec. 4.2)

State of dependence between the aleatory variables
Independence Unknown dependence

Methods Hybrid MC-FIA (ii.) VS Hybrid DBC-FIA (iv.)

-The upper and lower CDF of the output producetiyiyrid DBC-FIA
completely envelothose obtained by hybrid MC-FIA

-Hybrid DBC-FIA is useful to provide anitial “worst-case” estimate
of risk whennothingis known about theeal state of dependence
Findings between the random variables

-In realistic applications hybrid DBC-FIA leadsédrcessively
conservativdand thugpessimistig results that need to be refined by
acquiring further knowledge on the system, its nhadel the real state
of dependence between the random variables
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Appendix A. Two-dimensional Monte Carlo method

The main steps of the procedure afe®
(1) setie=1 (outer loop processing epistemic uncertaigtytC simulation);

(2) sample the.-th set of random realizatiorl%}e ,j =1, 2, ...,n, of the epistemically-

uncertain parameter vectoés from the probability distributiong” 0,).i=1,2,
e I

(3) sampleN, random realizationsy ", ia = 1, 2, ...,N, j = 1, 2, ...,n, of the
“probabilistic” variables Y,, j = 12...,n, from the probability distributions

p: (y,),i=1,2,...n, conditioned at the valueﬁf of the epistemically-uncertain

parameters), sampled at step (2) above (inner loop procesde@y uncertainty
by MC simulation);

(4) calculate the values z++ of the model output Z as 2=
F(y e, yst Yty ), ia = 1, 2, ..., N, and build theisth empirical
Cumulative Distribution Function (CDFy,* of Z;

(5) ifie <N, setie =ie + 1 and go back to step (2) above; otherwisepd6)tbelow;
(6) post-process thi, empirical CDFsFif, ie =1, 2, ...,Ng, thereby obtained in order

to identify the upper and lower CDFs fot as F“(z)= max {F.Z‘ (z )} and

=120 N, -

E” (Z‘)zie:ﬂwm{ﬁf (; )} respectively (i.e., as the two “extreme” CDFsttha

envelop all theN, CDFs generated in correspondence of Nerealizations of
epistemic uncertainty).

As highlighted in Sec. 2.1, the random samplingdopmed at steps (2) and (3)
above may account for possible dependences exidigtgveen the epistemically-
uncertain parameters (step (2)) and between tla¢omjevariables (step (3)), respectively;
on the other hand, such dependences can be ohyiogtlded in the analysis, only if

they can be modeled within a classical MC framewidrk
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By way of example and only for illustration purpsséet us consider two random

variablesY; andY, that are described by probability distributiop§:(y1) and p;: (v,)

(resp., CDFsFHf’(yl) and Fef(yz)) whose parameter vectogs and 6, are themselves
affected by epistemic uncertainty. In particuldf, is represented by a lognormal
distribution LN(8;) = LN(61.1, 612 = LN(iq, 61), whereé,, = 04 = 1.5 andfy = uy is
described on its turn by a normal probability disttion p*: (HM) = p“l( 1) (resp., CDF

(7

11

) = F”‘( 1)) with mean equal to 8, standard deviation equdl é&md support [6,
10]; Y, is represented by a lognormal distributioN(@,) = LN(62.1, 022 = LN(up, 02),
where 6,, = 0, = 1.7 and#,; = u, is described on its turn by a normal probability
distribution p*(6,,) = p“(4,) (resp., CDFF*(6,,) = F*(x,)) with mean equal to
2.2, standard deviation equal to 1 and support4[8]. In Figs. A.1 and A.2 the
procedures for sampling the random realizatiogs® and y;* for Y; and Yo,

respectively, are illustrated with respect to déf@ assumptions of (in)dependence
between the epistemically-uncertain paramefigrs= u; andf,; = 1. In Fig. A.1, we
assumetotal dependencéetween theepistemically-uncertain parameteés; = 1, and

6,1 = 1> andindependencbeetween theandom variabled; andY,. With reference to the

procedure outlined above, a random vec{qg,rz‘jl} is sampled to process epistemic
uncertainty (step (2)); in case tital dependencéetween the epistemically-uncertain
parameter®; ; = u; andf,, = u, the vector{rfl,rzifl} has to be such that; =r}, (e.g.,
r;=ry, =09 in Fig. A.1, top). The corresponding realizatiofls =z and 6}, = u;

for 6, 1 = 11y andé, ; = p, are then found by thieverse transform methaaks [F . ]71(r1‘3) =
[FM]_I(rl‘fl) (= 9.18 in Fig. A.1, top left) anz{Fg?-‘]_l(rzijl) = [F“Z ]_1(r2if1) (= 3.44 in Fig.
A.1, top right), respectively. The CDRS = F} = F/ andF,* = F = F" for the
random variable¥; andY,, respectively, are constructed using the valuespsad (at

step (2) above) fof; 1 = andb, 1 = wy, i.€., 6, = 17 = 9.18 andd;, =y = 3.44 (Fig.

1 Y11
A.1 bottom). Then, sincendependencé assumed between trendom variablesy; and

Y,, two (possibly differentrandom numbers: andu; (e.g.,u; = 0.2 andu; = 0.95 in
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Fig. A.1 bottom) are sampled from a uniform disitibn in [0,1) and the corresponding

realizations y,* and y;* of Y; andY, are computed a{ngY;]’l(uf) = [Fl;]‘l(uf)

[F5,]7(02) (= 7.91 in Fig. A1, bottom left) andF]*(us) = [Fr]1*(u;)

918

[FX,]17(095) (= 6.65 in Fig. A.1, bottom right), respectively.

A different situation arises in Fig. A.2, whaérelependencé now assumed between
the epistemically-uncertain parametegs = ¢, ; andu, = 6,1 (Whereagndependencés

still assumed between tlhandom variablesy; andY,). In this case, the random vector

{r‘;l, rzijl} sampled to process epistemic uncertainty (stepalye) is such that,; is

possibly differentfrom r; (e.g., r;;=02 and r;, =075 in Fig. A2, top). The
corresponding realization#y, = 4 and &, = t; for 61, = p; and 6,1 = u, are then
found as [FS‘-‘]_I(rlifl) = [F“‘ ]_1(r1ifl) (= 7.21 in Fig. A2, top left) anc{ng-‘]_l(rzijl) =
[F e ]71(r2if1) (= 2.86 in Fig. A.2, top right), respectively. TRBFsF," = F} = F. and
Fr = ng = F 7 for Y, andY,, respectively, are constructed using the valuespked
for 011 = andby 1 = iy, ie., B, =y = 7.21 and@;, = y; = 2.86 (Fig. A.2 bottom).

Then, sinceindependenceas still assumed betweevy, andY,, as abovewo random

numbersu; and u; (e.g.,u; = 0.35 andu} = 0.60 in Fig. A.2 bottom) are sampled
from a uniform distribution in [0,1) and the comesding realizationsy,* and y;* of
Y; andY, are computed a[sF;;]]‘l(uf) = [F;;]’l(uf) = [F%,17*(035) (= 6.51 in Fig. A.2,
bottom left) and[F,* 1*(u:) = [F]™(u;) = [F),]*(060) (= 2.83 in Fig. A2, bottom

right), respectively.
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Fig. A.1. Top: PDFsp* (;1) (left) and p* (;1) (right) of the epistemically-uncertain paramegarandu, of the
(aleatory) PDFs of the random variab¥esandY,, respectively; in evidence, two realizatiops = 9.18 and
4 = 3.44 sampled assuming total dependence betliegratameters. Bottom: CDRS' (left) and F*
(right) of Y; andY, built in correspondence gf- = 9.18 andu; = 3.44, respectively; in evidence, two
realizationsy ™ =7.91 andy," = 6.65 sampled assuming independence bet¥geandY,
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Fig. A.2. Top: PDFsp“'( J) (left) and p“l( 2) of the epistemically-uncertain parameterandu. of the
(aleatory) PDFs of the random variab¥esandY,, respectively; in evidence, two realizatiops = 7.21 and
4 =2.86 sampled assuming independence betweeratampters. Bottom: CDFBE " (left) and F* (right)

of Y, andY; built in correspondence gff" = 7.21 andy; = 2.86; in evidence, two réalizatiorﬁ“' =6.51 and
y;* = 2.83 sampled assuming independence betWeandY,

Appendix B. Hybrid Monte Carlo and Fuzzy Interval Analysis approach

The main steps of the procedure &

4-51

(1) seta =0 (outer loop processing epistemic uncertaitfuzzy interval analysis);

(2) select thex-cuts A, A’ ,..,A" ,j =1, 2, ...,n, of the possibility distributions

x"(0) = {nﬂ (9;.1)’ - (Hilz),...,ﬂg“”' (ej.m‘ )} of the parameterg ,j =1, 2, ...n;

(3) sampleN, random intervals[y* .y;,1, i, = 12...N,, j = 1, 2, ...,.n, of the

“probabilistic” variablesY, , j = 1, 2, ...,n, letting parameter®, range within the

correspondingr-cuts A’ A’ Af ,j =1, 2, ...,n (found at step (2) above)

(inner loop processing aleatory uncertainty by déad MC simulation);
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(4) find the smallest and largest values Hf f(Y1 Y, ,...,Yn), denoted byz" and z,
respectively, letting variablesY, range within the intervals[yi;a,y‘;la],

i.=22..,N_, j=12..,n (found at step (3) above). Notice that if the fimwe

Z= f(Y1 Y, Y) is non-monotonicthe smallest and largest values of, i.e.,

n

z: and Z', have to be found by performing axhaustivesearch within the

a

intervals [yi;a,)_/‘;la] (e.g., by means of optimization algorithms, Mor@arlo

Simulation, ...). Instead, whed = f(Y1 Y, Y) is monotonic(like in the case

n

studies of Sec. 3)z: and Z: can be foundanalytically in correspondence of the
extremeboundsof the intervals[l/i;a,yzia] : for example, ifZ = Yy-Y./Ys, then 28 =
Y, 3,1V andz; = V., 0, 1Y,

(5) take the valueg: and Z found in (4) above as the lower and upper limftthe N,
a-cuts A2 of Z, i, = 1,2...,N, . A probability massm(Aj'ia):]/Na is associated

at eachw-cut A>", i, = 12...,N_;

(6) for each setA of interest in the universe of discoursk, of Z, calculate the

plausibility PI,(A) and beliefBel,(A) of level a as PI_(A) = Zm(Aj'“) and

Al'a 0 AZ0

Bel,(A) = > m(AZ"), respectively.

AR OA
(7) if a<1,thenseta=a+Aa (e.g.,Aa = 005 in this paper) and return to step (2)

above; otherwise, go to (8) below;

(8) calculate the plausibilityPI(A) and belief BeA) for A as JPIG(A)da' ~
0

ﬁgPlicM(A) and J::Bela(A)da' ~ ﬁgBeLCm(A), respectively, whereq(
+ 1)= (14a + 1) = 21 is the total number afcuts processed in the analy&ig?
As highlighted in Sec. 2.2, it is worth noting thmrforming an interval analysis on
o-cuts assumedotal dependencebetween theepistemically-uncertain parameters

Actually, this procedure impliestrong dependencbetween thenformation sources
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(e.g., the experts or observers) that supply thatipossibility distributions, because the
sameconfidence leve(l — ¢ ) is chosen to build the-cuts forall the epistemically-
uncertain parameter$ In addition, notice that the random sampling penfed at step
(3) above may account for possiblependencesxisting between thaleatory variables

on the other hand, such dependences can be obyimgtlided in the analysignly if
they can be modeled within a classical MC framewdria this work, standard MC
simulation is used to propagate the aleatory uat#i®s, which presupposes
independencéetween thaandom variables Finally, as highlighted in Ref. 23, it is
worth noting that this hybrid propagation methoeacly assumes independence between
the group of probabilistic (i.e., aleatory or randomyariables and thegroup of the
possibilistic (i.e., epistemically-uncertainparameters of the aleatory probability
distributions.

By way of example and only for illustration purpseséet us consider two random
variablesY; andY, that are described by probability distributiop§:(y1) and p;: (v,)
(resp., CDFsFﬂf(yl) and F,,f(yz)) whose parameter vectots and @, are themselves

affected by epistemic uncertainty. In particuldf, is represented by a lognormal
distribution LN(8;) = LN(61.1, 612 = LN(w4, 61), Whereoy = 61, = 1.5 andfy = uy is
described by a triangular possibility distributiarf* (6,,) = 7 (1,) = TR@ay, ¢y, by) with
corec; = 8 and supportal, b;] = [7, 10]; Y, is represented by a lognormal distribution
LN(#,) = LN(62,1, 622 = LN(up, 02), wheret,; = u, = 9 andéd,, = o, is described by a
triangular possibility distributiorrz”: (92’2) =" (0'2) = TR(a,, C,, by) with corec, = 1.7
and supportd,, b,] = [1, 2]. In Fig. B.1 the procedure for samplitftg i,-th random
intervals [Xi;a,y‘;a] and [X:a,y;a] for the aleatory variableg, andY,, respectively, is
illustrated. Asingle possibility valuex (e.g.,a = 0.2 in Fig. B.1, top) is selected and the
correspondingi-cuts A* = A% = A% and A** = A® = A% for 0,1 =y andb,, = o,
are found a490.,,,.6,,,1 =[x, . A,] =[7.2,9.6] and@,,,.6,,,1 =[7,,.T,,] =[L.14,
1.94], respectively. Then, singedependencés assumed betweef; andY,, two random
numbersu; and u} (e.g., u® = 0.45 andu; = 0.85 in Fig. B.1, bottom) are sampled

from a uniform distribution in [0,1) and the intats [y‘;a,y;;,] and [y‘;a,y‘;a] are



56

computed

f,

as

la

1

(ur)

) o e

MEI,U ﬂ;

inf_ [FY]

0[10, ,.0:.4]

= [ inf
#0[72,96]

la

1

(ur)

, sup [F‘:‘]f1

010, ,.0:4]

[Fx]*(048), sup [FX]*( 045)}

ALK, ] 40[72:96]
[6.86, 9.31] and inf_ [FY] ; , sup [F‘,YZ]fl(u‘;) =
0,10, 020 0010, 0201

[sz]fl(ui;), sup [FY] i

O 0;4:024]

inf

OM1G,0.7,,]

[

[10.19, 11], respectively.
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Fig. B.1. Top: possibility distributionsz‘"( 1) (left) and (0'2) (right) of the epistemically-uncertain
parameterg; ando, of the (aleatory) PDFs of the random variabt[eande, respectively; in evidence the

cuts of level: = 0.2 A*

=[p 1,1 =[7.2,9.6]andA” =
upper and lower CDFs of (Ieft) andY; (right) built in correspondence of the extremmeal//

[g,..0,] =[1.14, 1.94], respectively. Bottom:

=7.2 and

=1.14 ando,,

= 1.94 of thex-cut A,

respectively' in

A, =9.6 of thex-cut A* and the extreme values,

evidence, two random |ntervaﬂ§/ Y] =[6. 86 9.31] andy y .] =[10.19, 11] sampled assuming
|ndependence betwedf andY,
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Appendix C. Monte Carlo-based Dempster-Shafer approach emplogg
Independent Random Sets

In the MC-based DS-IRS approach, the possibiliggriiution of a generic epistemically-
uncertain parametet is encoded into discrete (focal) sets =[6, 5[,] t=12,...,9
(where a, =1>a, >...>a, >a,, =0) whose masses amn, =Aa, =a,-a,, (see
Sec. 2.3). In this papeq = 20 and m, =Aa, =a, -a,,, = 0.05 for the sake of

t+1
comparison with the hybrid MC-FIA approach of S22 and Appendix B.
The main steps of the procedure &

(1) seti,=1 (outer loop processing epistemic uncertaintgtayydard MC simulation);

(2) sample the valueén};}, i=2%2..,m, j=1.2,..n, from the discrete distribution

{(a m ):t =12...,q: these sampled values represent thelevels of the

jatr e

6 .
focal sets A% A%: AT j=12..m
as; af as;

. J=12,..,n, of the discretized

possibility distributionsz” (0,) of the parameterd,, j = 1,2,..,n;
(3) perform the same steps (3) — (4) (inner loop preiogsaleatory uncertainty by

standard MC simulation) as in the procedure of Awjde B to obtain z*" and

7°*, i, =12..,N,, as the upper and lower limits o = f(Y, Y, ,....Y,) in

correspondence of thgth random realization of epistemic uncertainty;
(4) if ie <N, setie =ie + 1 and go back to step (2) above; otherwisepdd)tbelow;

(5) the random sets='™" :[gi"‘"a,i‘e"a] of Z are obtained with the collection of the

values z** and z*",ie =1, 2, ...,Ng, i, = 12...,N_, found at step (3) above. A

probability massm(E'" ) =1/(N* IN®) is associated at each random E&t' , i, =

1,2, ...Ne i, = 12..,N,;

a

(6) calculate the plausibiliti?l(A) and belieBel(A) for each setA of interest contained

in the universe of discourseU, of Z as PI(A)= Zm(E‘E"ﬂ) and

E''2n Az0

Bel(A)= > m(E""), respectively.
E°OA

Notice that, differently from the hybrid MC-FIA apgach, at step (2) above a
different possibility value (resp., confidence levat) (resp., 1 —«) is randomly and
independentlysampled for each epistemically-uncertain parameter, random set

independencés assumed between tlepistemically-uncertain parameterg addition,
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notice that the random sampling performed at sBmbove may account for possible
dependencesexisting between thealeatory variables on the other hand, such
dependences can be obviously included in the asalgsly if they can be modeled
within a classical MC framewor®: in this work, standard MC simulation is used to
propagate the aleatory uncertainties, which pressgmindependencebetween the
random variables

By way of example and only for illustration purpssket us consider the two random

variablesY; andY, described in the previous Appendix B. In Fig. €¢hé& procedure for
sampling thei,-th random intervals{zi;,yf] and [X‘;,y‘;] for the aleatory variabley;

and Y,, respectively, is illustrated. Sindadependencds now assumed between the
epistemically-uncertain parameter®,; = x; and 6,, = o,, two possibly different

possibility valuesay, and a%, (e.g., a;,= 0.8 anda’, = 0.1 in Fig. C.1, top) are

randomlyselected and the corresponding focal s&fs = A% = A% and A = A% =

o: for 6,1 = u; and b, = o, are found as[Qmﬁ,ﬁmh] :["_lw,'ﬂl,a;a] = [7.8, 8.4] and

[szzl%,gm‘e] =[o,,. .0,, ] =[1.07, 1.97], respectively. Then, sincelependencés
also assumed betwedh andY,, two random numbers; and u; (e.g.,u; = 0.55 and

u; =0.15 in Fig. C.1, bottom) are sampled from gam distribution in [0,1) and the

intervals  [y",yy] and [y!,y;] are computed as LH infawm[Fﬂf]_l(uf),

(L e
La

sup [F;]l(u;)}: [f ] ), sup ][az]l(uf)]

1O, g, Orcis) o] ALK, o .

1 T1

[Muimm[F,f]_l(OSS), sup [F]*(05 )}: [7.84, 8.46] and{

wu0[7884]

LA (AT

o
ods, 22

sup ][F;]l(u;a)} = [ int - [EX](w), sup ][Fsll(u;a)}

02.4'e ie oo, e 0

010,

[UZD‘[PJM[F?S]_I(O-“S)' sup [F;;]‘l(o.15)} =[7.02, 7.90], respectively.

0,0[107,197]
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Fig. C.1. Top: possibility distributiong* (;1) (left) and 7 (0'2) (right) of the epistemically-uncertain
parameterg; ando, of the (aleatory) PDFs of the random variabdeandY,, respectively; in evidence tlhe
cuts A" [,u A,,u ] =[7.8, 84]andA” =[go,...0,. 1 =[1.07,1.97] of levelsr;, = 0.8 anda;, = 0.1
for s andoz, respectlvely Bottom: upper and lower CDFQ(Q(Ieft) andY; (right) built in correspondence of

the extreme value$1 =7.8andy, = 8.4 of theu-cut A" and the extreme values, =1.07 andg,, =
1.97 of then-cut A, respectlvely in evidence, two random |nterv[a}s vl =1[7. 84, 8. 46] andy ym] =
[7.02, 7.90] sampled assuming independence betWeand >, respectively

Appendix D. Hybrid Dependency Bound Convolution and Fuzzy Inteval Analysis
approach

The Dependency Bound Convolution (DBC) meftialows computing extreme upper
and lower CDFs on the outputs of probabilistic mMiede matter what correlations or
dependencies exist among the input variables; thesads are also the “pointwise best

possible.*"
The method is based on the theorem of Frank etl8B7% which provides the

pointwise best possible bounds,. and F 7. for the resulZ = O(Y;, Y,) of a generic

binary mathematical operatio@(Y;, Y,) (which is non-decreasing in each place and

continuous, except possibly at infinity) betweemadt surely positive random variables

Y, and Y, of given Cumulative Distribution Functions (CDF§)" and F" "% The
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reader is referred to Refs. 17, 68 and 69 for tiendl expressions of %. and F .

whenO U {+, —, *, /} and to Ref. 89 for the extension dfeise results to other operators
such as power, logarithm, and so on.

In this theoretical framework, Ref. 69 providgserativerulesto explicitly determine
the boundsF2. and EEBC whenO U {+, —, * /}. In particular, the main steps of the
algorithm are: (i)discretizethe CDFsF* and F"“ of the random variable¥, andY,
into upper and lower CDFE*, F*“, F"*, and F", respectively (i.e., builgrobability
boxesfor Y; andY,); (ii) apply the mathematical formulas providedRef. 69 to obtain

bounds [I?DZBC]_1 and [EEBC]_l on thequantile function [FZ]’l; (iii) take theinverseof

[I?Z ]’1 and [EEBC]_l to get the bound$2_ and F.,. on the CDFF*. The reader is

DBC DBC

referred to the seminal paper for further technitehils.

The characteristics of the algorithm described abare here exploited to join the
Dependency Bound Convolution (DBC) method and thezl Interval Analysis (FIA)
approach within a “level-2” framework of hybrid @irabilistic and possibilistic)
uncertainty propagation. In synthesis, the maipsief the hybrid DBC-FIA algorithm
are:

(1) outer loop processing epistemic uncertainty by Fiérform the same steps (1) and

8,

(2) of the procedure in Appendix B to get thecuts A7, A’< ... A" of the
possibility distributions =” (8,) = {7*(6,,)7(6,.,)...7"" (6, )} of the
parameterd) ,j =1, 2, ....n;

(2) inner loop processing aleatory uncertainty by DBC:

. . . . B N 2 9”“‘
(i) letting parametersy; range within the correspondingcuts Al A LA,
(found at step (1) above), build the upper and to®@®Fs F,", F" (i.e., the

probability boxes) of levelx for the “probabilistic” variablesY, as F' =

sup{FHT'} andEZ,i = J?I,{FGY}J =1, 2, ...n, where F,,T' is the CDF of p;' ;

6,0A)
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(i) apply the DBC rules to obtain the bounds of Ievue%l?lfm]_1 and [E;DBC]_l on the

quantilefunction [FZ]_1 of the model outpu = (Y, Y, ,....Y,);

(iii) take theinverseof ['Efosc]_l and [EjDBC]_l to get the bounds of level F%,,. and

F? sc onthe CDFF* of the model outpuZ = f(Y1 Y, ,...,Yn).

(3) repeat step (2) above for another possibility valle (0, 1].

1
The boundsFZ. and F;,. on F? can be computed afz. :J‘IEL,%DBCda and
0

z
EDBC -

EZ ecda, respectively.

O Sy



