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Abstract

Acoustic imaging is a powerful tool to localize and reconstruct source powers using microphone array. However, it of-
ten involves the ill-posed inversions and becomes too time-consuming to obtain high spatial resolutions. In this paper,
we rstly propose a shift-invariant convolution model to approximate the forward model of acoustic power propaga-
tion. The convolution kernel is derived from the Symmetric Toepliz Block Toepliz (STBT) structure of propagation
matrix. Then we propose a hierarchical Bayesian inference approach via Variational Bayesian Approximation (VBA)
criterion in order to achieve robust acoustic imaging in colored background noises. For super spatial resolution and
wide dynamic power range, we explore the Student's-t prior on the acoustic power distribution thanks to the sparsity
and heavy tail of prior model. Colored noise distributions are also modeled by the Student's-t prior, and this does not
excessively penalize large model errors as the Gaussian white prior does. Finally proposed 2D convolution model and
VBA approach are validated through simulations and real data from wind tunnel compared to classical methods.

Keywords: Acoustic imaging, Variational Bayesian Approximation, Student's-t prior, colored noises, convolution,
Teopliz matrix

1. Introduction

Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction with mi-
crophone array, which can provide the insight into acoustic generating mechanisms and behavior properties. Since
decades, it has been widely applied in vibration detection and acoustic comfort evaluation of transportation in wind
tunnel tests etc. The classic forward model of power propagation for uncorrelated acoustic sources can be expressed
by a determined linear system of equations obtained in frequency dognairCx, wherey 2 RN denotes the mea-
sured beamforming power vector [1] at the microphone arxa®; RN denotes the unknown acoustic power vector
on the source plan& 2 RN N denotes the propagation operation which depends on the relative geometric distance
between the source plane and sensor array; N denotes the total number of discretization gridS.iSusteally a
singular matrix, its direct inversion causes unstable and non-unique solutions. Recently, the Deconvolution Approach
for Mapping of Acoustic Source (DAMAS) method [2] has beereetively applied in wind tunnel tests by NASA.
DAMAS gives an iterative solution for = Cx under the non-negative constraintxarHowever, DAMAS is sensitive
to background noise due to its noise-free assumption, and it alsrsérom slow convergence due to its spatially
variant Point Spread Function (PSF) of sensor array. To accelerate deconvolution, extended DAMAS [3] have been
proposed to suppose the PSF to be shift invariant, so that Discrete Fourier Transportation (DFT) could be used to per-
form fast deconvolution. Nevertheless, this assumption inevitabégis spatial resolution. More recently,sparse
regularization has been investigated to greatly improve the spatial resolutions [4]. The authors have proposed several
approaches by making good use of sparse distribution of source powers in Gaussian white noises, such as Robust
DAMAS with Sparse Constraint (SC-RDAMAS), Bayesian inference approach via a sparsity enforcing prior [5].

Principal corresponding author: Ning.CHU@lIss.supelec.fr (Ning CHU). TeB3: (0)1 69 85 1743. Fax : 00 33 (0)1 69 85 17 65
Email addresseddjafari@Iss.supelec.fr (Ali MOHAMMAD-DJAFARI), jose.picheral@supelec.fr (Joe PICHERAL),
Nicolas.GAC@Iss.supelec.fr  (Nicolas GAC)



In this paper, our motivation is to explore an eient and robust approach for acoustic imaging in colored back-
ground noise on the application of detecting acoustic source on the surface of vehicle surface in wind tunnel tests. This
paper is organized as follows: Section 2 introduces the proposed convolution approximation for acoustic power prop-
agation model and the convolution kernel selections; then the Variational Bayesian Approximation (VBA) approach
is proposed in Section 3; the validation of convolution approximation and proposed VBA approach are respectively
shown in Section 4 and 5; nally we conclude this paper in Section 6.

The novelties are: to improve the eiency, we modify the power propagation model by applying convolution
approximation based on the spatially invariant PSF; and we derive appropriate PSF size and values from the Symmetric
Toepliz Block Toepliz (STBT) structure of propagation matfixTo obtain super spatial resolution and colored noise
suppression, we apply the Variational Bayesian Approximation (VBA) via Student's-t priors on source powers and
colored noise distributions, thanks to the sparsity and long heavy tail of Student's-t distribution.

2. Proposed convolution approximation for power propagation

Before modeling, we make three necessary assumptions: Acoustic sources are uncorrelated monopole and sensors
are omnidirectional with unitary gain. In Fig.1, our objectives are shown for the acoustic imaging on the surface
of the vehicle in the wind tunnel S2A in Renault Company. The source plane is discretizéd biX. identical
grids, whereN;, and denote row number and column number, provided N.. We de ne an acoustic power image
Xo = fXrcQy, N, - The acoustic power propagation from source plane to the microphone sensor array can be modeled as
a multiply-and-add operator obtained in frequency domain[2], denoted by a power transferring@ratfox oy N,
where array responsg; 2 C can be modeled by the array geometry as

Ha; k2
Ciij = @ lzkz: 1)
kaik;
n Or
whereg = ﬁ exp j2 f im " denotes the steering vector [6], in whiahy, denotes the propagation distance

from source signal dth grid tomth microphone Sensor;m = r:m=Co denotes the ideal propagation time durimg,

wherecy denotes the acoustic speed in common air; f denotes the acoustic frequency and M denotes the total sensor
number. We also apply the equivalent sources and mirror sources to correct the wind refraction and ground re ection
respectively as discussed in authors' paper [5].

(@) (b)
Figure 1:Wind tunnel experiments: (a) Wind tunnel S2A [7] and (b) lllustration of signal processing [5]
In Eq.(1),N N propagation matrixC causes a computational complexity as heav@@¢?). This motivates us to

approximate Eq.(1) by a shift-invariant convolution model, so that the computational complexity could be signi cantly
reduced intdD(N log N).



Figure 2:2D convolution approximation model



2.1. STBT matrix approximation

From Eq.(1),c;;; mainly depends on geometric distance &dan be approximated into a Symmetric Toepliz
Block Toepliz (STBT)C, if the aperture of sensor array is relative small with respect to the source plane, and vice
versa. Under this assumption, we haegd = 1L, 152 M=D? for anyi;j 2 f1; ;Ng with D being the
averaged distance between sensor and source plane; And we also hayg)( D?foranym 2f1; ;Mg Then
we get an approximated array respongess:

. "
o =L e i ) @
k) [} M CO k) k)

m=1

wherecy denotes the acoustic speed in the common air; we;get Tj;, C =CT,thenCis asymmetric matrix as
shown in Fig.(2).

Let xo denote the unknown source power image with si¥es Ng, whereN;,N. denotes the row and column
number respectively, provided  N.. Source power vectot is composed of the pixels & in the row- rst order.
If source powerss; X; 2 Xo are on the same row on power imagethen we have; _ jrim rymj _ ji  Jj for sensor
m, thereforeC is ablock matrix:

( o . o . a
Cl(<’;3|’q) = Gijj; Cpg = fc(kﬁ’q)gvc Ne; C = fCpgQu N, 3)
i=k+(p 1N j=1+(@ I1)N;

wherec(kﬁ;q) denotes théth row, Ith column item of the sub-matri@,[,;q which is thepth row, gth column sub-matrix

of symmetric matrixC. And there ard\? square blockép;q with the sizeN, in C, as shown in Fig.(2).

For anyc®; &P9 | 2 Cpq, we havec®® = & jk Ij, thenCpyq is aToeplitz sub-matrix, as shown in
Fig.(2).

For anycf(ffq) 2 Cpyq andcf(ﬁﬂ;qﬂ) 2 Cpriqe, We getcf(’;’,m = (:I((ﬁ*l?q*l) _ jk 1j, thenC is aToeplitz block matrix,
as shown in Fig.(2).

Finally, C can be approximated by&rIBT matrix C, as shown in Fig.(2).

2.2. Convolution kernel

The above approximation make the classic forward model in Eq.(1) to be approximated by the convolution model
as:

Yo=HoXot+ ; (4)

wherey, denotes the beamforming power image with the same siz&g, asdenotes the model errors, which are
the combinations of background noisesat the sensors, forward model uncertainty caused by acoustic multipath
propagations, as well as the convolution approximation errors caused in Bdg(8Enotes the convolution matrix,
satisfyingHoxo = f[hp.q  Xolp:qOv N~ Where operator denotes convolution, [, denotes thepth, gth item of the
output convolution matrix in Fig.(2); Anlly:q = fhp q(I;K)gy np denotes the convolution kernel matrix with the sizes
N Nf; Owing to the STBT matrixC, hp,q is composed of;j from corresponding row of as follows:

( hp(lbk) = C;j  cijsi=g+(p 1)Nc

jzi+(k bMIgN.+1 b

(5)

whereb cdenotes integer. In practice, we takeq(l; k) = c;;j, sincec;;j can be directly calculated from Eq.(1). Finally,
the real kernel should be rearranged@$(k; I) = hPa(l b X 2cj jk b 1c) as shown in Fig.(2).

For fast and eective convolution, we should rstly select a shift-invariant kernel matrix. Owing to the STBT
matrix C, the itemsc;; in the middle row (= bN'Tlc) can contain all the information &, so that it is reasonably to
select the center kernel Bgq = Ny 1cp 1.

Secondly we should select a relatively small kernel sizes compared to the maximaWisizé 2 2N 1. Since
STBT matrixC has the square blocks with the sia¢s N, it is naturally to select a square kernel with the dikze
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3. Proposed VBA inference approach

For the inverse problem in Eq.(4), some prior information (constraints) on both source peward colored
noises should be investigated in order to reduce the uncertainty of solutions. £€ixo; ]’ denote the unknown
parameters, where operato)’(denotes transpose, amldenotes observed data and known parameters. The in-
verse problem via priors can be ectively solved by the following Bayesian inference approaches: If we assign the
speci ¢ prior probabilityp( ) to noises , we can de ne the likelihoogh(Dj ) which is used classically by the Maxi-
mum Likelihood (ML) estimation asy, = argmax fp(Dj )g In the Bayesian approach, we also assign the speci ¢
prior probabilitiesp( ) to all unknown parameters. Then we use the Maximum A Posteriori (MAP) estimation as
“map = argmax fin p( jD)g/ argmin f Inp(Dj ) Inp( )gaccording to Baye's rule. In fact, MAP can be seen as
a regularization of ML, but MAP has the advantage of adaptively estimating the regularization parameter, compared
to conventional regularization methods.

However in MAP,In p( jD ) is often hardly to get an analytical form and usually a nonlinear function with re-
spect to . Moreover, both ML and MAP are the point estimators. Thesecdities can be overcome by the VBA
[8, 9] estimation, in which, posterigo( jD ) is approximated by a family of basic easily handled probability dis-
tributions g( ), namelyp( jD)  q( ); gnd propery( ) are estimated by maximizing variational boubh ) as:

a( ) = argmax)fL( )g whereL( ) = o )In%d . Generally, are supposed to be mutually independent:

a( )= T;q( ). ThenL( ) is maximized by the mean eldlgpproximation ag: i) = R% wherel () denotes
the partition function, de nedal ;) =<Inp(D; )>¢ 5= d( )Inp(D; )d ;, where ;denotes the parameter

vector except item;. In fact, I( ;) could hardly be analytically computed, since it dependsjon;). But VBA
inference can still obtain the approximating postecjor) dwing to the conjugate distributions, in whid(, } comes
from the same family of the priqo( ) based on the proper combination of the likelihood and priors.

3.1. Heavy tail prior on colored noises

In wind tunnel experiments, we model the colored noiséy the Student's-t prioS{ ) that has a long heavy
tail, instead of Gaussian white ones whose sharp tail excessively penalizes the large errors of forward model. An-
pther attractive superposition property is t&df ) can be generated by marginalizing hidden variabésSt( ) =
p( j)p( )d , in which, conditional priorp( j ) = N( j0; 1) is the multivariate Gaussian distribution, with
= Diagf gbeingnoise covariance matrd?iag() denotes diagonal matrix; = f ,gy denotes the noise precision
vector; Andp( ) Q‘:lGama( nja;b) = r’}':l (@) (b)® 2 leb n witha;b being the hyperparameters of
p( Yand (X)= t*le'dt.
According to proposed convolution forward model of Eq.(4), the likelihood is determined by the conditional prior
p(j)=N(j0; *as:

i
(2 )N=2
where operator X' denotes conjugate transpose.

e 1o Hoxod"  (vo HoXo); (6)

P(YoiXo; ) =

3.2. Sparse prior on acoustic power image

Acoustic source in wind tunnel experiments are generated by the wind collision on the speci ¢ parts of the vehicle
surface. Therefore sources sparsely locate on some particular parts, while on the most of common parts, there are few
sources. This is why acoustic powegsbecome K-sparsity signals when the source plane is discretized into N grids.
Such a sparse distribution can be represented by the distribution that has a very high value around the original zero
(sparsity) and a long heavy tail (dynamic range of source powers).

Here we apply the Student's-t prio&i(xo) [8] to enforce the sparsity and wide dynamic rgnge of source power
distribution. Owing to the superposition property, hidden variabfemarginalized out fo8 (xg) = p(Xoj ) p( )d ,
wherep(xoj ) = N (x0j0; 1) is assigned to multivariate Gaussian distribution, in whichdepotes power covariance
matrix, de ned as 4 = Diagf gwith =f ,gy being the power precision vector; apfl ) = r“1'=1Gamr:( nja;b),
wherea ;b denotes the hyperparameterspff ). 0 < , < 1 greatly promotes the sparsity, whilg ! 1  makes
S1(xp) to approach Gauss normal distribution, which has no sparsity. Compared to the Double Exponential (DE) prior
in [5], St(x,) involves one hidden variablg, for eachx,, while DE prior requires two parameters in order to achieve
the same sparsity and heavy tail distribution, as the red curve shown in Fig.3a.
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Figure 3:(a) Sparse priors on Gaussian normal, Laplace, DE and Student's-t (b) N dimension 3-hierarchical Bayesian Graphical
model, Double circle: observed data; Single: unknown variables; Dash: hidden variables; Square: hyperparameters; Arrow:
dependence.

3.3. VBA parameter estimations
In Fig.3b, the graphical model describes the dependencies between the observeg datmown variables
= [xo; 17, their hidden variables = [ ; ]T and hyperparameters = [a ;b ;a ;b ]". According to Baye's
rule, we havep( ;' jyo) /' p(yoj ;" )p( j )p( ). Owing to the multivariate Gaussian likelihood in Eq.(6) and the
superpositions of Student's-t priors onwe speci cally obtain the posterior as

P( ;' i¥o) =N(Xojyo HoXo; )N (X0j0; ) . @)
Gamg ja;b)N(j0; "Gamg ja;b) -
Owing to the conjugate prior, approximating posterior belongs to Student's-t distribution which consists of multivari-
ate Gaussiaq(Xo) and Gamma distributiors( °), §( ) as:

8 A
g 40xo) =Q (o™ )
§ Q( ):Q n:lGamd nja ;Abn) , (8)
()= "\ Gamg nja ;b");
wherexp and' are supposed to be mutually independent; and expected variable estimations are as:

8 . -
%Ax: XH-(I)—< >y0
x=(Hy< >Hot< x>)!

a:a+%;6n:b + 2 < XoXJ >mn ©)
a=a+i;b=b+i< T>,
where operator ), denotes thath diagonal item, ang > denotes expectation, which are calculated as:
8 i ) R
% < >=Diagf< ,>g = Diagf< a =" >qgy
< y>=Diagf< ,>gy = Diagf<a =b">gy . (10)

Ts=~ ~T
<XO)‘ISO - XTX+ * T T T
< >=vyoyYy 2Ho xYg + Ho < XoX, > Hj

All the solutions in Eq.(9, 10) require the values of the hyperparameterda ;b ;a ;b ]". During the iterations
of parameter estimations, variables [Xo;' ] are rstly computed, then the hyperparametersan be alternatively
estimated by making the rst partial derivative of variational bound ) equal zero% = 0) as follows:

P
(%:Nlanbphll\lz(a)+ Ni<In >
@ No  mi<n>

(11)
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where< , > and< , > are computed in Eq.(10), ardd() denotes the digamma function de ned byx) =
%x)= (X) where () denotes the Gamma functioa.;b can be simultaneously estimated from the same procedure.
Parameter update can be done numerically by Matlab fzero function.

3.4. Computational analysis

From the solutions in Eq. (9),x involves the matrix inversion which can not be caIcuIatquexphcnly nqglently
We have to approxmateX with a circulant matrix as (<> H Ho+ < >) %, where = n—1 I
denote the arithmetic mean. Then the products of circulant matrlces carcimrlﬂy computed in the Discrete Fourier
Transform (DFT) domain. In Eq.(9), the estimated expectatipaf source powers can be analytically expressed as
Axl = HQ < >y This linear system of equations is solved iteratively with the conjugate gradient algorithm,
which require$O(N log N) computations to treat N dimension veckgr If Q iterations are needed, total computations

are ofO(Q N log N), which remains moderate burden.

4. Simulations

The Simulation con gurations are based on the wind tunnel experiments in Fig.1a: averaged distance between the
sensors and source plane is850m; There are M64 sensors forming a non-uniform array with ®¢laveraged
aperture; Source plane witr# surface is discretized by 5crBem grids. In Fig.5a, input power imagg consists
of 4 monopoles and 5 extended sources withedént patterns, whose powers are within 14dB dynamic range; And
image size are oN,=27, N.=17. The output beamforming power imaggis shown in Fig.5b. The colored noises
are generated by using the Gaussian white noises via low pass Iter (cfitequency 3000Hz), and the averaged
Signal-to-Noise Ratio (SNR) is set as low as 0dB.

50 50 09 50

100 100 100

150 150 150

200 200 200

250 250 250

300 1 300 300

350 350 350

400 400 400

450 . . . . . . . . . b 450 . . . . . . . . . 450 . . . . . . . . . 0
a. 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450 C 50 100 150 200 250 300 350 400 450

Figure 4:Propagation matrix: (a) Near eld (b) Far eld (c) Derence between Normalized near and far elds

We rstly show the structures of propagation mat@xn the cases of near and far elds in Fig.(4). Itis seen that
can be approximated as a STBT matrix. Then we show the convolution approximating grrdkgg 9ok§:ky0k§
100% VS various kernels in In Fig.6, wheyg denotes convolution results. We examine six kernels witledint
forms and sizes. As we can see, the larger kerneli$ize, the smallery, become; Particularly wheN, approaches
Nc, all y are very close to each other and maintain 3%. Finally reconstruction r&glifts=ig.5 are shown as: the
beamforming merely gives blur image of strong soures; Though big kernel size inevitably deteriorate boundary pixels
and de nitely harms the deconvolution result, our Bayesian MAP inversion based on proposed convolution model
actually approaches the high resolution result based on classic forward model, but it performs much faster owing to
the shift-invariant convolution kernel.

5. Wind tunnel experiments

Wind tunnel experiments are designed to reconstruct the positions and acoustic powers on the traveling car surface.
We suppose that all sources locate on the same plane, since the curvature of the car is relatively small compared to the
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MAP inversion and (d) Proposed VBA inversion
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Figure 6: (a) Convolution errors VS Convolution kernel without noises. (b) Deconvolution errors VS kernel sizes without noises

distance 4.5m between the car and array plane. The grid ismfdnd source plane is thus of 3101 pixels. The

wind speed is 180Fh; there are 524288 samplings with the sampling frequeige?.56 10* Hz. Total samplings

are separated int=R04 blocks with 2560 samplings in each bloc. The working frequency is 2500Hz, which is
sensitive to human being. The image results are obtained in frequency domain shown by normalized dB images with
10dB span. Propagation mati@in Eq.(4) is recti ed for the wind refraction and ground re ection respectively as
discussed in [5].
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Figure 7:Acoustic imaging on car surface at 2500Hz: (a) Beamforming (b) DAMAS (5000i) (c) DR-DAMAS (5000i) (d) CLEAN
(e) SC-DAMAS (f) SC-RDAMAS (g) Joint MAP inference and (h) Proposed VBA inference.

Figure.7 illustrates the estimated power images of mentioned methods at 2500Hz. Due to the high sidelpbe e
beamforming just gives a fuzzy image of strong sources in Fig.7a; DAMAS well deconvolves the beamforming image
and discovers sources around the wheels and rearview mirror, however, many false targets are also detected on the
air in Fig.7b; Diagonal Removal DAMAS in Fig.7 eliminates most of the artifacts, but it also harms weak sources.
Figure.7d and 7e show that both CLEAN and SC-DAMAS overcome the drawbacks of the DAMAS, but unexpected
strong points are detected on the ground due to the parameter selection for each use. In Fig.7f and g, the sparsity
constraint and Joint MAP via sparsity prior not only manages to distinguish the strong sources around the two wheels,
rearview mirror and side window, but also successfully reconstructs the week ones on the front cover and light.
Finally, the proposed VBA inference ectively achieve super-resolutions and wide dynamic range on the two wheels
and mirror; furthermore, the suppression of the background noise are much better than others thanks to the Student's-t
prior on the colored noise. From table 1, proposed VBA via convolution model is mariest realized compared to
Bayesian MAP method via classical forward model.

Table 1: Computational cost for treating whole car: image$31l pixels, at 2500Hz, based on CPU:3.33GHz.

Methods | Beamforming| DAMAS | DR-DAMAS | CLEAN | SC-RDAMAS | MAP | Proposed
Time (s) 1 10 11 45 852 1012 578




6. Conclusion

In this paper, we have developed anaent VBA inference approach via Student's-t priors on source powers
and colored noises for ecient acoustic imaging with super spatial resolution, wide dynamic range and robustness to
noises.

The main novelties are: 1) For e€iency, we have proposed convolution approximation with xed kernel for
acoustic power propagation. Appropriate kernel size and values have been determined from the Symmetric Toepliz
Block Toepliz structure of propagation matrix. 2) For super resolution and wide dynamic range, we have proposed
Student's-t prior on source power distribution owing to its sparsity and heavy tail. 3) For robustness to colored
noises, we have proposed Student's-t prior on the colored noise, which can not excessively penalize large errors as
the Gaussian prior does. 4) For hyperparameter estimations, we have applied the VBA optimization via conjugate
distributions, in which, approximating posterior distributions are favorably composed of the multivariate Gaussian
distribution for variables, and Gamma distributions for hidden variables.

For the validations, We have presented method comparisons based on the simulated and real data in wind tunnel
experiments. For future work, we are investigating Graphical Processing Unit (GPU) to accelerate proposed the
hierarchical VBA inference approach.
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