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Regularized Generalized Canonical Correlation
Analysis and PLS Path Modeling

Arthur Tenenhaus

Abstract Regularized Generalized Canonical Correlation Analysis (RGCCA) and
Partial Least Squares Path Modeling (PLSPM) have been proposed for studying
relationships between J sets of variables observed on the same set of individuals
taking into account a graph of connection between blocks. The main goal of this
this communication, is to compare the various options of PLS-PM and RGCCA.
Actually, first comparisons show very close behavior of these two approaches.

Key words: Generalized Canonical Correlation Analysis, Regularization, PLS path
modeling

1 Introduction

On the one hand, PLSPM is often used (Wold (1985), Tenenhaus et al. (2005)) for
analyzing relationships between several set of variables observed on the same set
of individuals. The PLSPM algorithm works very well in practice but, for some
options, is lacking an analytical proof of convergence and suffer of lack of opti-
mality condition (the criterion to which the PLSPM-mode A algorithm converges
is unknown). On the other hand, Regularized Generalized Canonical Correlation
Analysis (RGCCA) (Tenenhaus and Tenenhaus (2011)) is also used for analyzing
relationship between several set of variables observed on the same set of individuals.
However, RGCCA is based on a monotonically convergent iterative algorithm and
has the distinct advantage to rely on an explicit optimization problem. The main goal
of this communication is to compare RGCCA and PLS-PM. Actually, first compar-
isons show very close behavior of these two algorithms. This paper is organized in
three sections. PLSPM is presented in section 1, RGCCA is discussed in section 2
and PLSPM and RGCCA are compared on simulated data in section 3.

Arthur Tenenhaus
Name, SUPELEC, e-mail: arthur.tenenhaus @ supelec.fr
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2 PLS Path Modeling (PLSPM)

PLSPM (Wold (1985); Tenenhaus et al., (2005)) is a framework for analyzing as-
sociation between J set of variables observed on the same set of n individuals. Let
us consider J blocks of variables X ....,X,. Each block X, represents a set of p;
variables observed on the same set of n individuals. PLSPM aims at extracting the
information which is shared by the J blocks of variables taking into account a priori
graph of connections between blocks. In this framework, a design matrix C = {c i}
defines this graph of connections: cj is equal to 1 if blocks X; and X; are con-
nected, or is equal to 0 otherwise. Two algorithms for PLSPM were proposed: the
Wold’s algorithm (1985) and the Lohmdller’s algorithm (1989). In this paper we
only consider the Wolds PLSPM algorithm with the modes A and B and the cen-
troid, factorial or Horst schemes. This algorithm is described in Algorithm 1.

Algorithm 1 Algorithm for PLS path modeling with 7; =0 or 7; = 1
= Step A. Initialisation:

Choose arbitrary vectors ﬁ?, j=1,...,J and normalize them such that var(X ;5{}) =1
1 ~1/2
0 50 20 0
a; = |;(aj)’xi-xja}-J aj
repeat s=1,2,...
for j=1,2,...,J do

& Step B. Inner component for X ;

il -’
zj- = ch;cw(covtxjaj-,X;,.af'l)]Xkaf" + z cj;cw(cuv(X;-aj,X;,.aiH))Xkai
k=1 k=j+1
where w(x) = 1 for the Horst scheme, x for the factorial scheme and sign(x) for the centroid
scheme and and

t= Step C. Outer weight for block j

-1
1
» l(]—rj);X}Xj+rle X'zs

\f (Z)X;

where 7; = 1 if mode A is selected for block X; and 7; = 0 if mode B is selected for block X;
end for
until convergence

a
1

(1-7):X'X;+ 71| Xz

1
(1— Tj)%X§X;+T}-I} XX
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3 Regularized Generalized Canonical Correlation Analysis

Regularized Generalized Canonical Correlation Analysis (RGCCA) proposed in
[Tenenhaus & Tenenhaus (2011)] tackles exactly the same problem than PLSPM.
RGCCA is defined as the following optimization problem (1):

41,82,

1
subject to a'}(l—T_;);'IX?X_,-—FTJI)aj:l,j:1....._.)' (

. J ey P
{ mdxwz;,k:];j#‘l‘jk 8 (X;a;, Xeay)

In this optimization problem, g may be defined as g(x) = x (Horst scheme pro-
posed in (Kramer (2007)), g(x) = |x (Centroid scheme proposed in (Wold, 1985)
or g(x) = X2 (Factorial scheme proposed in (Lohméller (1989)). In this context, T;
varies between 0 and 1. The vector a; (resp. y; = X;a;) is referred to as an outer
weight vector (resp. an outer component) and z; is referered to as an inner com-
ponent. The Horst scheme penalizes structural negative correlation between compo-
nents while both Centroid and Factorial schemes can be viewed as attractive alterna-
tives that enable two components to be negatively correlated. Optimization problem
(1) is limited to these three schemes because they are the most used in the multi-
block and Partial Least Squares literature.

From the viewpoint of optimization problem (1), the shrinkage parameters 7; €
[0,1], j=1,...,J interpolate smoothly between the maximisation of the covariance
(all T; = 1) and the maximisation of the correlation (all T; = (). The choice of the
shrinkage parameters requires being clear on the goal pursued by the RGCCA anal-
ysis. A guideline is defined for the choice of the shrinkage constants by providing
interpretations on the properties of the resulting block components.

e The covariance based model (7; = 1 - a.k.a. RGCCA mode A) tends in first to
find "stable” (large variance) block components y; = X;a;, j=1,....J, while

taking into account the correlations with neighboring components (second prior-
ity).

e The correlation based model (7; = 0 - ak.a. mode B) gives priority to the cor-
relation between neighboring components and tends to find unstable block com-
ponents y; = X;a;, j=1,....J. Itis worth noticing that RGCCA-Mode B gives
exactly PLSPM-mode B.

s (< 1; <1 (ak.a. mode ridge) yields a compromise between stability and correla-
tion. This mode tends to find block components y; = Xja;, j=1,...,J with large
variance and at the same time are well correlated to its neighboring components.
Mode B and RGCCA-Mode A, are unified towards a regularization parameter t;
(0 < t; < 1), which provides a connection between the two.

These two motivations (block components with large variance (PCA criteria) vs.
correlation with their neighboring components) are opposed but the introduction of
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the shrinkage parameters yields a compromise between these two objectives. An al-
gorithm of resolution of optimization problem (1) is described in Algorithm 2.

Algorithm 2 Algorithm for Regularized Generalized Canonical Correlation Analysi
with0<7; <1

> Step A. Initialisation:

Choose arbitrary vectors i? such that (?7) holds:

-1/2
1

0 50 0
a; tjl+(l—rj}gx‘jxj:|aj] aj;

(@9

repeat s=1,2,...
for j=1,2,...,Jdo

t- Step B. Inner component for X;

j-1 J
i — Zc_,-;(w(cov(x_,-a}.,xka;' 1)))(;(31' T+ E c_,-;(w(cuv(x_,-a'}'-,xkai' ")) Xsaf
k=1 k=741

where w(x) = 1 for the Horst scheme, x for the factorial scheme and sign(x) for the centroid
scheme and and

1> Step C. Outer weight for block j:

—1 -1
] |
Xtz 2 | a4+ (1 —7) XX, Xjzg

s+l [ syt
att = ()X 5

)

1
le—}- (1 — T")EX;XJ}

end for
until convergence

To obtain a monotonically convergent algorithm (i.e. the bounded criteria to be
maximized increases at each iteration), we use a sequence of operations similar
to the one used in the Wold’s algorithm for PLSPM. The procedure begins by an
arbitrary choice of initial normalized aJ,...,a} (Step A in Algorithm 2). Suppose

outer weight vectors aj ! ,,a°2'+' e aj.“l are constructed for Xi,...,X;_. The outer
weight vector aff‘ ! is computed by considering the inner component z; associated
with X; given in Step B in Algorithm 2, and the formula given in Step C in Algo-

rithm 2. The procedure is iterated until convergence of the bounded criterion.

4 Comparison between RGCCA and PLS path modeling

First, PLSPM Algorithm (Algorithm 1) and RGCCA algorithm (Algorithm 2) are
equivalent when 7; = 0 for all blocks. Therefore, in this comparison, PLSPM and
RGCCA are only compared for 7; = 1.

As discussed in the introduction, PLSPM-mode A algorithm works very well in
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practice but is lacking an analytical proof of convergence and suffers of lack of op-
timality property (the criterion to which the PLSPM-mode A algorithm converges
is unknown). On the other hand, RGCCA is based on a monotonically convergent
iterative algorithm and has the distinct advantage to rely on an explicit optimization
problem. Moreover, Algorithm 1 and Algorithm 2 are very similar. The only differ-
ence between those two algorithms relies on the normalisation of the outer weight
vectors. In PLSPM-mode A, the outer components are normalised to unit variance.
In RGCCA-mode A, the outer weights are normalized to unit norm. Intuitively, the
benefit to standardize the outer components in PLSPM is that each block has the
same weight (independently of its number of variables) in the computation of the
inner component. In others words, the number of variables in each block has limited
influence on the computation of the inner components. At first glance, when in-
specting the RGCCA new mode A algorithm, one may think that RGCCA-mode A
gives more importance to high dimensional blocks than to ones characterized by few
variables. One of the main objective of this comparison is to look at this question.

4.1 Simulation settings

In this simulation RGCCA-mode A and PLSPM-mode A are compared on a simple
simulated example

Simulation 1. In this simulation, we consider J = 3 blocks, where the n x p block
X;.j=1,...,3is generated according to the following model.

X;=U33+E;,f:l::3 (2)

where u € R are drawn from a normal distribution with zero mean and unit vari-
ance, a; = a = a3 is a vector of ones € R'? and E;is ann x p noisy matrix where
each element is drawn from a normal distribution with zero mean and unit variance.
Therefore, for this first simulation n = 50, p; = 10, p» = 10 and p3 = 10. Each
block is strongly unidimensional with associated latent variable u. All blocks are
supposed to be connected which means that ¢i3 = ¢12 = ¢23 = 1. RGCCA-mode
A and PLSPM-mode A with centroid scheme (g(x)= |x ) are applied on this simu-
lated dataset. Table 1 reports correlations between outer components obtained with
RGCCA-mode A and PLSPM-mode A. On this simple simulation, RGCCA-mode

PLS-PM (mode A) vs. RGCCA new mode A |correlation between _'P LS and y'f-—ccc“‘ with u
cor{yf'“s:y%wm“) =1 cor(yf‘“s,u) = ccr(ylcoc"‘,u} =1
cor(yzp'"s:ygﬁm"] =1 cor(y5”,u) = cor(yROCCA y) =1
cor(y; =, y3 ) =1 cor(y; ~,u) = cor(yz =" u) = |

Table 1 Simulation 1. Correlations between outer components obtained from RGCCA new mode
A and PLS path modeling mode A.
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A and PLSPM-mode A give the same outer components.

Simulation 2. The next simulation was designed to evaluate the sensitivity of both
RGCCA-mode A and PLSPM-mode A to unbalanced dimensional block settings.
For that purpose, the following simulated example is considered

X] =|Xi;H; +F{] (3)

where X = ual + E, the kth column of H, is defined by hyx = (1 — at)u+ ov with
v is a vector orthgonal to each column of X = [X;, X5, X3] and F is a noisy matrix.
We are interested in studying relationships between X7 and unchanged X and X3.
as a function of the number of additional variable and the value of c.

e For o = 0 additional variable hy; are closed to u which implies that no additional
information is added. The first principal component of Xj is very close to u.
Results for RGCCA-mode A and PLS-PM mode A is expected to be unchanged
whatever the number of additional variables.

e For o = 1 additional variable hy; are orthogonal to each column of X = X, X, X3].
hy; does not influence the construction of the first outer component of each block.
We may however mention that for a large number of addtional variables, the first
principal component of X7 is very close to v. Results of RGCCA-mode A and
PLSPM-mode A are expected to be unchanged because v is orthogonal to each
column of X = [Xy, X2, X3] and thus strongly orthogonal to u.

e For 0 < o < 1 additional variable h;; are a mix between u and v and may attract
the first latent variable in term of correlation and variance. Due to the criteria
on which RGCCA-mode A is based, RGCCA is maybe more attracted by the
additional variables when « is close from (.5 than PLSPM-mode A.

Results for RGCCA-mode A and PLSPM-mode A are reported in Figure 1 and 2.
From figure 1 is observed that RGCCA-mode A and PLSPM-mode A yield very
close results and seem to be sensitive to additional variables weakly correlated to
the latent variable. Moreover, from figure 2 we can note that the outer components
computed with RGCCA-mode A and PLSPM-mode A are “attracted” by the first
principal components which means that the variance terms weight to much com-
pared to the term of correlation.

5 Conclusion

On these two simulations and on all the real datasets we analyzed, we have failed
to find situations where RGCCA-mode A and PLSPM-mode A exhibit different be-
haviors. Empirically we have noted that both RGCCA-mode A outer components
and PLSPM-mode A outer components are very close to the first principal compo-
nents which means that the variance terms weight to much compared to the term of
correlation. If a compromise (block components with large variance (PCA criteria)
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Fig. 1 The number of additional variables vary from 10 to 200. Correlations between }'ELS and
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Fig. 2 The number of additional variables is set to 500. Correlation between ;™ and yR9CCA with

uand v} and yR9CCA with v as a function of «

vs. correlation with their neighboring components) is desired the RGCCA-mode
ridge (0 < 7; < 1) is an attractive solution.
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