
HAL Id: hal-00869804
https://hal-supelec.archives-ouvertes.fr/hal-00869804

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A cascaded supervised learning approach to inverse
reinforcement learning

Edouard Klein, Bilal Piot, Matthieu Geist, Olivier Pietquin

To cite this version:
Edouard Klein, Bilal Piot, Matthieu Geist, Olivier Pietquin. A cascaded supervised learning approach
to inverse reinforcement learning. Edouard Klein, Bilal Piot, Matthieu Geist, Olivier Pietquin. Joint
European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD
2013), Sep 2013, Prague, Czech Republic. Springer, Lecture Notes in Computer Science, 8188, pp.1-16,
2013, Machine Learning and Knowledge Discovery in Databases. <10.1007/978-3-642-40988-2_1>.
<hal-00869804>

https://hal-supelec.archives-ouvertes.fr/hal-00869804
https://hal.archives-ouvertes.fr

A Cascaded Supervised Learning Approach to
Inverse Reinforcement Learning

Edouard Klein1,2, Bilal Piot2,3, Matthieu Geist2, Olivier Pietquin2,3∗

1 ABC Team LORIA-CNRS, France.
2 Supélec, IMS-MaLIS Research group, France

firstname.lastname@supelec.fr
3 UMI 2958 (GeorgiaTech-CNRS), France

Abstract. This paper considers the Inverse Reinforcement Learning
(IRL) problem, that is inferring a reward function for which a demon-
strated expert policy is optimal. We propose to break the IRL problem
down into two generic Supervised Learning steps: this is the Cascaded
Supervised IRL (CSI) approach. A classification step that defines a score
function is followed by a regression step providing a reward function. A
theoretical analysis shows that the demonstrated expert policy is near-
optimal for the computed reward function. Not needing to repeatedly
solve a Markov Decision Process (MDP) and the ability to leverage
existing techniques for classification and regression are two important
advantages of the CSI approach. It is furthermore empirically demon-
strated to compare positively to state-of-the-art approaches when using
only transitions sampled according to the expert policy, up to the use
of some heuristics. This is exemplified on two classical benchmarks (the
mountain car problem and a highway driving simulator).

1 Introduction

Sequential decision making consists in choosing the appropriate action given the
available data in order to maximize a certain criterion. When framed in a Markov
Decision Process (MDP) (see Sec. 2), (Approximate) Dynamic programming
((A)DP) or Reinforcement Learning (RL) are often used to solve the problem by
maximizing the expected sum of discounted rewards. The Inverse Reinforcement
Learning (IRL) [15] problem, which is addressed here, aims at inferring a reward
function for which a demonstrated expert policy is optimal.

IRL is one of many ways to perform Apprenticeship Learning (AL): imitating
a demonstrated expert policy, without necessarily explicitly looking for the re-
ward function. The reward function nevertheless is of interest in its own right. As
mentioned in [15], its semantics can be analyzed in biology or econometrics for
instance. Practically, the reward can be seen as a succinct description of a task.
Discovering it removes the coupling that exists in AL between understanding

∗ The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°270780.

the task and learning how to fulfill it. IRL allows the use of (A)DP or RL tech-
niques to learn how to do the task from the computed reward function. A very
straightforward non-IRL way to do AL is for example to use a multi-class clas-
sifier to directly learn the expert policy. We provide in the experiments (Sec. 6)
a comparison between AL and IRL algorithms by using IRL as a way to do AL.

A lot of existing approaches in either IRL or IRL-based AL need to re-
peatedly solve the underlying MDP to find the optimal policies of intermediate
reward functions. Thus, their performance depends strongly on the quality of
the associated subroutine. Consequently, they suffer from the same challenges
of scalability, data scarcity, etc., as RL and (A)DP. In order to avoid repeatedly
solving such problems, we adopt a different point of view.

Having in mind that there is a one to one relation between a reward func-
tion and its associated optimal action-value function (via the Bellman equation,
see Eq. (1)), it is worth thinking of a method able to output an action-value
function for which the greedy policy is the demonstrated expert policy. Thus,
the demonstrated expert policy will be optimal for the corresponding reward
function. We propose to use a score function-based multi-class classification step
(see Sec. 3) to infer a score function. Besides, in order to retrieve via the Bell-
man equation the reward associated with the score function computed by the
classification step, we introduce a regression step (see Sec. 3). That is why the
method is called the Cascaded Supervised Inverse reinforcement learning (CSI).
This method is analyzed in Sec. 4, where it is shown that the demonstrated
expert policy is near-optimal for the reward the regression step outputs.

This algorithm does not need to iteratively solve an MDP and requires only
sampled transitions from expert and non-expert policies as inputs. Moreover, up
to the use of some heuristics (see Sec. 6.1), the algorithm is able to be trained
only with transitions sampled from the demonstrated expert policy. A specific
instantiation of CSI (proposed in Sec. 6.1) is tested on the mountain car problem
(Sec. 6.2) and on a highway driving simulator (Sec. 6.3) where we compare it with
a pure classification algorithm [20] and with two recent successful IRL methods
[5] as well as with a random baseline. Differences and similarities with existing
AL or IRL approaches are succinctly discussed in Sec. 5.

2 Background and Notation

First, we introduce some general notation. Let E and F be two non-empty sets,
EF is the set of functions from F to E. We note ∆X the set of distributions
over X. Let α ∈ RX and β ∈ RX : α ≥ β ⇔ ∀x ∈ X,α(x) ≥ β(x). We will often
slightly abuse the notation and consider (where applicable) most objects as if
they were matrices and vectors indexed by the set they operate upon.

We work with finite MDPs [10], that is tuples {S,A, P,R, γ}. The state space
is noted S, A is a finite action space, R ∈ RS×A is a reward-function, γ ∈ (0, 1)
is a discount factor and P ∈ ∆S×A

S is the Markovian dynamics of the MDP.
Thus, for each (s, a) ∈ S × A, P (.|s, a) is a distribution over S and P (s′|s, a)
is the probability to reach s′ by choosing action a in state s. At each time

step t, the agent uses the information encoded in the state st ∈ S in order
to choose an action at ∈ A according to a (deterministic4) policy π ∈ AS .
The agent then steps to a new state st+1 ∈ S according to the Markovian
transition probabilities P (st+1|st, at). Given that Pπ = (P (s′|s, π(s)))s,s′∈S is
the transition probability matrix, the stationary distribution over the states ρπ
induced by a policy π satisfies ρTπPπ = ρTπ , with XT being the transpose of X.
The stationary distribution relative to the expert policy πE is ρE .

The reward function R is a local measure of the quality of the control. The
global quality of the control induced by a policy π, with respect to a reward R,
is assessed by the value function V πR ∈ RS which associates to each state the
expected discounted cumulative reward for following policy π from this state:
V πR (s) = E[

∑
t≥0 γ

tR(st, π(st))|s0 = s, π]. This long-term criterion is what is
being optimized when solving an MDP. Therefore, an optimal policy π∗R is a
policy whose value function (the optimal value function V ∗R) is greater than that
of any other policy, for all states: ∀π, V ∗R ≥ V πR .

The Bellman evaluation operator TπR : RS → RS is defined by TπRV = Rπ +
γPπV where Rπ = (R(s, π(s)))s∈S . The Bellman optimality operator follows
naturally: T ∗RV = maxπ T

π
RV . Both operators are contractions. The fixed point

of the Bellman evaluation operator TπR is the value function of π with respect to
reward R: V πR = TπRV

π
R ⇔ V πR = Rπ + γPπV

π
R . The Bellman optimality operator

T ∗R also admits a fixed point, the optimal value function V ∗R with respect to
reward R.

Another object of interest is the action-value functionQπR ∈ RS×A that adds a
degree of freedom on the choice of the first action, formally defined by QπR(s, a) =
T aRV

π
R (s), with a the policy that always returns action a (T aRV = Ra+γPaV with

Pa = (P (s′|s, a))s,s′∈S and Ra = (R(s, a))s∈S). The value function V πR and the
action-value function QπR are quite directly related: ∀s ∈ S, V πR (s) = QπR(s, π(s)).
The Bellman evaluation equation for QπR is therefore:

QπR(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)Q(s′, π(s′)). (1)

An optimal policy follows a greedy mechanism with respect to its optimal
action-value function Q∗R:

π∗R(s) ∈ argmax
a

Q∗R(s, a). (2)

When the state space is too large to allow matrix representations or when the
transition probabilities or even the reward function are unknown except through
observations gained by interacting with the system, RL or ADP may be used to
approximate the optimal control policy [16].

We recall that solving the MDP is the direct problem. This contribution
aims at solving the inverse one. We observe trajectories drawn from an expert’s
deterministic4 policy πE , assuming that there exists some unknown reward RE
4 We restrict ourselves here to deterministic policies, but the loss of generality is
minimal as there exists at least one optimal deterministic policy.

for which the expert is optimal. The suboptimality of the expert is an interest-
ing setting that has been discussed for example in [7,19], but that we are not
addressing here. We do not try to find this unknown reward RE but rather a
non trivial reward R for which the expert is at least near-optimal. The trivial
reward 0 is a solution to this ill-posed problem (no reward means that every
behavior is optimal). Because of its ill-posed nature, this expression of Inverse
Reinforcement Learning (IRL) still has to find a satisfactory solution although
a lot of progress has been made, see Sec. 5.

3 The Cascading Algorithm

Our first step towards a reward function solving the IRL problem is a classifica-
tion step using a score function-based multi-class classifier (SFMC2 for short).
This classifier learns a score function q ∈ RS×A that rates the association of a
given action5 a ∈ A with a certain input s ∈ S. The classification rule πC ∈ AS
simply selects (one of) the action(s) that achieves the highest score for the given
inputs:

πC(s) ∈ argmax
a

q(s, a). (3)

For example, Multi-class Support Vector Machines [4] can be seen as SFMC2

algorithms, the same can be said of the structured margin approach [20] both
of which we consider in the experimental setting. Other algorithms may be en-
visioned (see Sec. 6.1).

Given a dataset DC = {(si, ai = πE(si))i} of actions ai (deterministically)
chosen by the expert on states si, we train such a classifier. The classification
policy πC is not the end product we are looking for (that would be mere super-
vised imitation of the expert, not IRL). What is of particular interest to us is
the score function q itself. One can easily notice the similarity between Eq. (3)
and Eq. (2) that describes the relation between the optimal policy in an MDP
and its optimal action-value function. The score function q of the classifier can
thus be viewed as some kind of optimal action-value function for the classifier
policy πC . By inversing the Bellman equation (1) with q in lieu of QπR, one gets
RC , the reward function relative to our score/action-value function q:

RC(s, a) = q(s, a)− γ
∑
s′

P (s′|s, a)q(s′, πC(s′)). (4)

As we wish to approximately solve the general IRL problem where the transition
probabilities P are unknown, our reward function RC will be approximated with
the help of information gathered by interacting with the system. We assume that
another dataset DR = {(sj , aj , s′j)j} is available where s′j is the state an agent
taking action aj in state sj transitioned to. Action aj need not be chosen by any

5 Here, actions play the role of what is known as labels or categories when talking
about classifiers.

particular policy. The dataset DR brings us information about the dynamics of
the system. From it, we construct datapoints

{r̂j = q(sj , aj)− γq(s′j , πC(s′j))}j . (5)

As s′j is sampled according to P (·|sj , aj) the constructed datapoints help building
a good approximation of RC(sj , aj). A regressor (a simple least-square approxi-
mator can do but other solutions could also be envisioned, see Sec. 6.1) is then
fed the datapoints ((sj , ai), r̂j) to obtain R̂C , a generalization of {((sj , aj), r̂j)j}
over the whole state-action space. The complete algorithm is given in Alg. 1.

There is no particular constraint on DC and DR. Clearly, there is a direct
link between various qualities of those two sets (amount of data, statistical rep-
resentativity, etc.) and the classification and regression errors. The exact nature
of the relationship between these quantities depends on which classifier and re-
gressor are chosen. The theoretical analysis of Sec. 4 abstracts itself from the
choice of a regressor and a classifier and from the composition of DC and DR

by reasoning with the classification and regression errors. In Sec. 6, the use of a
single dataset to create both DC and DR is thoroughly explored.

Algorithm 1 CSI algorithm
Given a training set DC = {(si, ai = πE(si))}1≤i≤D and another training set DR =
{(sj , aj , s′j)}1≤j≤D′
Train a score function-based classifier on DC , obtaining decision rule πC and score
function q : S ×A→ R
Learn a reward function R̂C from the dataset {((sj , aj), r̂j)}1≤j≤D′ , ∀(sj , aj , s′j) ∈
DR, r̂j = q(sj , aj)− γq(s′j , πC(s′j))
Output the reward function R̂C

Cascading two supervised approaches like we do is a way to inject the MDP
structure into the resolution of the problem. Indeed, mere classification only takes
into account information from the expert (i.e., which action goes with which
state) whereas using the Bellman equation in the expression of r̂j makes use of
the information lying in the transitions (sj , aj , s

′
j), namely information about

the transition probabilities P . The final regression step is a way to generalize
this information about P to the whole state-action space in order to have a
well-behaved reward function. Being able to alleviate the ill effects of scalability
or data scarcity by leveraging the wide range of techniques developed for the
classification and regression problems is a strong advantage of the CSI approach.

4 Analysis

In this section, we prove that the deterministic expert policy πE is near optimal
for the reward R̂C the regression step outputs. More formally, recalling from
Sec. 2 that ρE is the stationary distribution of the expert policy, we prove that
Es∼ρE [V ∗

R̂C
(s)− V πE

R̂C
(s)] is bounded by a term that depends on:

– the classification error defined as εC = Es∼ρE [1{πC(s)6=πE(s)}];
– the regression error defined as εR = maxπ∈AS ‖εRπ ‖1,ρE , with:
• the subscript notation already used for Rπ and Pπ in Sec. 2 meaning that,

given an X ∈ RS×A, π ∈ AS , and a ∈ A, Xπ ∈ RS and Xa ∈ RS are
respectively such that: ∀s ∈ S,Xπ(s) = X(s, π(s)) and ∀s ∈ S,Xa(s) =
X(s, a) ;

• εRπ = RCπ − R̂Cπ ;
• ‖.‖1,µ the µ-weighted L1 norm: ‖f‖1,µ = Ex∼µ[|f(x)|];

– the concentration coefficient C∗ = Cπ̂C with:
• Cπ = (1− γ)

∑
t≥0 γ

tcπ(t), with cπ(t) = maxs∈S
(ρTEP

t
π)(s)

ρE(s) ;
• π̂C , the optimal policy for the reward R̂C output by the algorithm ;

The constant C∗ can be estimated a posteriori (after R̂C is computed). A
priori, C∗ can be upper-bounded by a more usual and general concentration
coefficient but C∗ gives a tighter final result: one can informally see C∗ as a
measure of the similarity between the distributions induced by π̂C and πE
(roughly, if π̂C ≈ πE then C∗ ≈ 1).

– ∆q = maxs∈S(maxa∈A q(s, a) − mina∈A q(s, a)) = maxs∈S(q(s, πC(s)) −
mina∈A q(s, a)), which could be normalized to 1 without loss of generality.
The range of variation of q is tied to the one of RC , R̂C and V πC

R̂C
. What

matters with these objects is the relative values for different state action
couples, not the objective range. They can be shifted and positively scaled
without consequence.

Theorem 1. Let πE be the deterministic expert policy, ρE its stationary distri-
bution and R̂C the reward the cascading algorithm outputs. We have:

0 ≤ Es∼ρE [V ∗
R̂C

(s)− V πE
R̂C

(s)] ≤ 1

1− γ (εC∆q + εR(1 + C∗)) .

Proof. First let’s recall some notation, q ∈ RS×A is the score function output
by the classification step, πC is a deterministic classifier policy so that ∀s ∈
S, πC(s) ∈ argmaxa∈A q(s, a), RC ∈ RS×A is so that ∀(s, a) ∈ S ×A,RC(s, a) =

q(s, a)− γ∑s′∈S P (s′|s, a)q(s′, πC(s′)), and R̂C ∈ RS×A is the reward function
output by the regression step.

The difference between RC and R̂C is noted εR = RC− R̂C ∈ RS×A. We also
introduce the reward function RE ∈ RS×A which will be useful in our proof, not
to be confused with RE the unknown reward function the expert optimizes:

∀(s, a) ∈ S ×A,RE(s, a) = q(s, a)− γ
∑
s′∈S

P (s′|s, a)q(s′, πE(s′)).

We now have the following vectorial equalities RCa = qa − γPaqπC ;RE
a =

qa − γPaqπE ; εRa = RCa − R̂Ca . Now, we are going to upper bound the term:
Es∼ρE [V ∗

R̂C
− V πE

R̂C
] ≥ 0 (the lower bound is obvious as V ∗ is optimal). Recall

that π̂C is a deterministic optimal policy of the reward R̂C . First, the term
V ∗
R̂C
− V πE

R̂C
is decomposed:

V ∗
R̂C
− V πE

R̂C
= (V π̂C

R̂C
− V π̂C

RC
) + (V π̂C

RC
− V πE

RC
) + (V πE

RC
− V πE

R̂C
).

We are going to bound each of these three terms. First, let π be a given determin-
istic policy. We have, using εR = RC − R̂C : V πRC − V πR̂C = V πεR = (I − γPπ)−1εRπ .
If π = πE , we have, thanks to the power series expression of (I − γPπE)−1, the
definition of ρE and the definition of the µ-weighted L1 norm, one property of
which is that ∀X,µTX ≤ ‖X‖1,µ:

ρTE(V πRC − V πR̂C) = ρTE(I − γPπE)−1εRπE =
1

1− γ ρ
T
Eε

R
πE ≤

1

1− γ ‖ε
R
πE‖1,ρE .

If π 6= πE , we use the concentration coefficient Cπ. We have then:

ρTE(V πRC − V πR̂C) ≤ Cπ
1− γ ρ

T
Eε

R
π ≤

Cπ
1− γ ‖ε

R
π ‖1,ρE .

So, using the notation introduced before we stated the theorem, we are able
to give an upper bound to the first and third terms (recall also the notation
Cπ̂C = C∗): ρTE((V πE

RC
− V πE

R̂C
) + (V π̂C

R̂C
− V π̂C

RC
)) ≤ 1+C∗

1−γ εR. Now, there is still
an upper bound to find for the second term. It is possible to decompose it as
follows:

V π̂C
RC
− V πE

RC
= (V π̂C

RC
− V πC

RC
) + (V πC

RC
− V πE

RE
) + (V πE

RE
− V πE

RC
).

By construction, πC is optimal for RC , so V π̂C
RC
− V πC

RC
≤ 0 which implies:

V π̂C
RC
− V πE

RC
≤ (V πC

RC
− V πE

RE
) + (V πE

RE
− V πE

RC
).

By construction, we have V πC
RC

= qπC and V πE
RE

= qπE , thus:

ρTE(V πC
RC
− V πE

RE
) = ρTE(qπC − qπE)

=
∑
s∈S

ρE(s)(q(s, πC(s))− q(s, πE(s)))[1{πC(s)6=πE(s)}].

Using ∆q, we have: ρTE(V πC
RC
− V πE

RE
) ≤ ∆q

∑
s∈S ρE(s)[1{πC(s) 6=πE(s)}] = ∆qεC .

Finally, we also have:

ρTE(V πE
RE
− V πE

RC
) = ρTE(I − γPπE)−1(RE

πE −RCπE) = ρTE(I − γPπE)−1γPπE (qπC − qπE),

=
γ

1− γ ρ
T
E(qπC − qπE) ≤ γ

1− γ∆qεC .

So the upper bound for the second term is: ρTE(V π̂C
RC
−V πE

RC
) ≤ (∆q+ γ

1−γ∆q)εC =
∆q
1−γ εC . If we combine all of the results, we obtain the final bound as stated in
the theorem. ut

Readers familiar with the work presented in [5] will see some similarities between
the theoretical analyses of SCIRL and CSI as both study error propagation in
IRL algorithms. Another shared feature is the use of the score function q of the

classifier as a proxy for the action-value function of the expert QπERE .
The attentive reader, however, will perceive that similarities stop there. The
error terms occurring in the two bounds are not related to one another. As CSI
makes no use of the feature expectation of the expert, what is known as ε̄Q in
[5] does not appear in this analysis. Likewise, the regression error εR of this
paper does not appear in the analysis of SCIRL, which does not use a regressor.
Perhaps more subtly, the classification error and classification policy known in
both papers as εC and πC are not the same. The classification policy of SCIRL
is not tantamount to what is called πC here. For SCIRL, πC is the greedy policy
for an approximation of the value function of the expert with respect to the
reward output by the algorithm. For CSI, πC is the decision rule of the classifier,
an object that is not aware of the structure of the MDP. We shall also mention
that the error terms appearing in the CSI bound are more standard than the
ones of SCIRL (e.g., regression error vs feature expectation estimation error)
thus they may be easier to control. A direct corollary of this theorem is that,
given perfect classifier and regressor, CSI produces a reward function for which
πE is the unique optimal policy.

Corollary 1. Assume that ρE > 0 and that the classifier and the regressor are
perfect (εC = 0 and εR = 0). Then πE is the unique optimal policy for R̂C .

Proof. The function q is the optimal action-value function for πC with respect
to the reward RC , by definition (see Eq. (4)). As εC = 0, we have πC = πE . This
means that ∀s, πE(s) is the only element of the set argmaxa∈A q(s, a). Therefore,
πC = πE is the unique optimal policy for RC . As εR = 0, we have R̂C = RC ,
hence the result.

This corollary hints at the fact that we found a non-trivial reward (we recall that
the null reward admits every policy as optimal). Therefore, obtaining R̂C = 0
(for which the bound is obviously true: the bounded term is 0, the bounding
term is positive) is unlikely as long as the classifier and the regressor exhibit
decent performance.

The only constraints the bound of Th. 1 implies on datasets DR and DC is
that they provide enough information to the supervised algorithms to keep both
error terms εC and εR low. In Sec. 6 we deal with a lack of data in dataset DR.
We address the problem with the use of heuristics (Sec. 6.1) in order to show
the behavior of the CSI algorithm in somewhat more realistic (but difficult)
conditions.

More generally, the error terms εC and εR can be reduced by a wise choice
for the classification and regression algorithms. The literature is wide enough
for methods accommodating most of use cases (lack of data, fast computation,
bias/variance trade-off, etc.) to be found. Being able to leverage such common
algorithms as multi-class classifiers and regressors is a big advantage of our
cascading approach over existing IRL algorithms.

Other differences between existing IRL or apprenticeship learning approaches
and the proposed cascading algorithm are further examined in Sec. 5.

5 Related Work

IRL was first introduced in [15] and then formalized in [9]. Approaches summa-
rized in [8] can be seen as iteratively constructing a reward function, solving an
MDP at each iteration. Some of these algorithms are IRL algorithms while others
fall in the Apprenticeship Learning (AL) category, as for example the projection
version of the algorithm in [1]. In both cases the need to solve an MDP at each
step may be very demanding, both sample-wise and computationally. CSI being
able to output a reward function without having to solve the MDP is thus a
significant improvement.

AL via classification has been proposed for example in [12], with the help of a
structured margin method. Using the non-trivial notion of metric in an MDP, the
authors of [6] build a kernel which is used in a classification algorithm, showing
improvements compared to a non-structured kernel.

Classification and IRL have met in the past in [13], but the labels were com-
plete optimal policies rather than actions and the inputs were MDPs, which had
to be solved. It may be unclear how SCIRL [5] relates to the proposed approach
of his paper. Both algorithms use the score function of a classifier as a proxy to
the action-value function of the expert with respect to the (unknown) true re-
ward: QπER . The way this proxy is constructed and used, however, fundamentally
differs in the two algorithms. This difference will cause the theoretical analysis of
both approaches (see Sec. 4) to be distinct. In SCIRL, the score function of the
classifier is approximated via a linear parametrization that relies on the feature
expectation of the expert µE(s) = E[

∑
t≥0 γ

tφ(st)|s0 = s, πE]. This entails the
use of a specific kind of classifier (namely linearly-parametrized-score-function-
based classifiers) and of a method of approximation of µE . By contrast, almost
any off-the-shelf classifier can be used in the first step of the cascading approach
of this paper. The classification step of CSI is unaware of the structure of the
MDP whereas SCIRL knows about it thanks to the use of µE . In CSI, the struc-
ture of the MDP is injected by reversing the Bellman equation prior to the
regression step (Eq. 4 and (5)), a step that does not exist in SCIRL as SCIRL
directly outputs the parameter vector found by its linearly-parametrized-score-
function-based classifier. The regressor of CSI can be chosen off-the-shelf. One
can argue that this and not having to approximate µE increases the ease-of-use
of CSI over SCIRL and makes for a more versatile algorithm. In practice, as
seen in Sec. 6, performance of SCIRL and CSI are very close to one another
thus CSI may be a better choice as it is easier to deploy. Neither approach is a
generalization of the other.

Few IRL or AL algorithms do not require solving an MDP. The approach
of [17] requires knowing the transition probabilities of the MDP (which CSI
does not need) and outputs a policy (and not a reward). The algorithm in [3]
only applies to linearly-solvable MDPs whereas our approach does not place such
restrictions. Closer to our use-case is the idea presented in [2] to use a subgradient
ascent of a utility function based on the notion of relative entropy. Importance
sampling is suggested as a way to avoid solving the MDP. This requires sampling

trajectories according to a non-expert policy and the direct problem remains at
the core of the approach (even if solving it is avoided).

6 Experiments

In this section, we empirically demonstrate the behavior of our approach. We
begin by providing information pertaining to both benchmarks. An explanation
about the amount and source of the available data, the rationale behind the
heuristics we use to compensate for the dire data scarcity and a quick word
about the contenders CSI is compared to are given Sec. 6.1. We supply quanti-
tative results and comparisons of CSI with state-of-the art approaches on first a
classical RL benchmark (the mountain car) in Sec. 6.2 and then on a highway
driving simulator (Sec. 6.3).

6.1 Generalities

Data Scarcity The CSI algorithm was designed to avoid repeatedly solving
the RL problem. This feature makes it particularly well-suited to environments
where sampling the MDP is difficult or costly. In the experiments, CSI is fed only
with data sampled according to the expert policy. This corresponds for example
to a situation where a costly system can only be controlled by a trained operator
as a bad control sequence could lead to a system breakdown.

More precisely, the expert controls the system for M runs of lengths
{Li}1≤i≤M , giving samples {(sk, ak = πE(ak), s′k)k} = DE . The dataset DC

fed to the classifier is straightforwardly constructed from DE by dropping the
s′k terms: DC = {(si = sk, ai = ak)i}.

Heuristics It is not reasonable to construct the dataset DR = {((sk, ak =
πE(sk)), r̂k)k} only from expert transitions and expect a small regression error
term εR. Indeed, the dataset DE only samples the dynamics induced by the
expert’s policy and not the whole dynamics of the MDP. This means that for a
certain state sk we only know the corresponding expert action ak = πE(sk) and
the following state s′k sampled according to the MDP dynamics : s′k ∼ P (·|sk, ak).
For the regression to be meaningful, we need samples associating the same state
sk and a different action a 6= ak with a datapoint r̂ 6= r̂k.
Recall that r̂j = q(sj , aj) − γq(s′j , πC(s′j)) (Eq. (5)); without knowing s′k ∼
P (·|sk, a 6= ak), we cannot provide the regressor with a datapoint to asso-
ciate with (sk, a 6= ak). We artificially augment the dataset DR with samples
((sj = sk, a), rmin)j;∀a 6=πE(sj)=ak where rmin = mink r̂k − 1. This heuristics in-
structs the regressor to associate a state-action tuple disagreeing with the expert
(i.e., (sk, a 6= ak)) with a reward strictly inferior to any of those associated with
expert state action tuples (i.e., (sk, ak = πE(sk))). Semantically, we are assert-
ing that disagreeing with the expert in states the expert visited is a bad idea.
This heuristics says nothing about states absent from the expert dataset. For

such states the generalization capabilities of the regressor and, later on, the ex-
ploration of the MDP by an agent optimizing the reward will solve the problem.
Although this heuristics was not analyzed in Sec. 4 (where the availability of
a more complete dataset DR was assumed), the results shown in the next two
subsections demonstrate its soundness.

Comparison with State-of-the-Art Approaches The similar looking yet
fundamentally different algorithm SCIRL [5] is an obvious choice as a contender
to CSI as it advertises the same ability to work with very little data, without
repeatedly solving the RL problem. In both experiments we give the exact same
data to CSI and SCIRL.

The algorithm of [3] also advertises not having to solve the RL problem, but
needs to deal with linearly solvable MDPs, therefore we do not include it in our
tests. The Relative Entropy (RE) method of [2] has no such need, so we included
it in our benchmarks. It could not, however, work with the small amount of data
we provided SCIRL and CSI with, and so to allow for importance sampling, we
created another dataset Drandom that was used by RE but not by SCIRL nor
CSI.

Finally, the classification policy πC output by the classification step of CSI
was evaluated as well. Comparing classification and IRL algorithms makes no
sense if the object of interest is the reward itself as can be envisioned in a
biological or economical context. It is however sound to do so in an imitation
context where what matters is the performance of the agent with respect to
some objective criterion. Both experiments use such a criterion. Classification
algorithms don’t have to optimize any reward since the classification policy can
directly be used in the environment. IRL algorithms on the other hand output
a reward that must then be plugged in an RL or DP algorithm to get a policy.
In each benchmark we used the same (benchmark-dependent) algorithm to get
a policy from each of the three rewards output by SCIRL, CSI and RE. It is
these policies whose performance we show. Finding a policy from a reward is of
course a non-trivial problem that should not be swept under the rug; nevertheless
we choose not to concern ourselves with it here as we wish to focus on IRL
algorithms, not RL or DP algorithms. In this regard, using a classifier that
directly outputs a policy may seem a much simpler solution, but we hope that
the reader will be convinced that the gap in performance between classification
and IRL is worth the trouble of solving the RL problem (once and for all, and
not repeatedly as a subroutine like some other IRL algorithms).

We do not compare CSI to other IRL algorithms requiring repeatedly solving
the MDP. As we would need to provide them with enough data to do so, the
comparison makes little sense.

Supervised Steps The cascading algorithm can be instantiated with some
standard classification algorithms and any regression algorithm. The choice of
such subroutines may be dictated by the kind and amount of available data, by
ease of use or by computational complexity, for example.

We referred in Sec.3 to score-function based multi-class classifiers and ex-
plained how the classification rule is similar to the greedy mechanism that exists
between an optimal action-value function and an optimal policy in an MDP.
Most classifications algorithms can be seen as such a classifier. In a simple k-
nearest neighbor approach, for example, the score function q(s, a) is the number
of elements of class a among the k-nearest neighbors of s. The generic M-SVM
model makes the score function explicit (see [4]) (we use a SVM in the mountain
car experiment Sec. 6.2). In the highway experiment, we choose to use a struc-
tured margin classification approach [20]. We chose a SVR as a regressor in the
mountain car experiment and a simple least-square regressor on the highway.

It is possible to get imaginative in the last step. For example, using a Gaus-
sian process regressor [11] that outputs both expectation and variance can enable
(notwithstanding a nontrivial amount of work) the use of reward-uncertain re-
inforcement learning [14]. Our complete instantiation of CSI is summed up in
Alg. 2.

Algorithm 2 A CSI instantiation with heuristics
Given a dataset DE = (sk, ak = πE(ak), s

′
k)k

Construct the dataset DC = {(si = sk, ai = πE(si)) = ak}
Train a score function-based classifier on DC , obtaining decision rule πC and score
function q : S ×A→ R
Construct the dataset {((sj = sk, aj = ak), r̂j)j} with r̂j = q(sj , aj) − γq(s′j =
s′k, πC(s

′
j = s′k))

Set rmin = minj r̂j − 1.
Construct the training set DR = {((sj = sk, aj = ak), r̂j)j} ∪ {((sj =
sk, a), rmin)j;∀a 6=πE(sj)=ak}
Learn a reward function R̂C from the training set DR
Output the reward function R̂C : (s, a) 7→ ωTφ(s, a)

6.2 Mountain Car

The mountain car is a classical toy problem in RL: an underpowered car is tasked
with climbing a steep hill. In order to do so, it has to first move away from the
target and climb the slope on its left, and then it moves right, gaining enough
momentum to climb the hill on the right on top of which lies the target. We
used standard parameters for this problem, as can for example be found in [16].
When training an RL agent, the reward is, for example, 1 if the car’s position is
greater than 0.5 and 0 anywhere else. The expert policy was a very simple hand
crafted policy that uses the power of the car to go in the direction it already
moves (i.e., go left when the speed is negative, right when it is positive).

The initial position of the car was uniformly randomly picked in [−1.2;−0.9]
and its speed uniformly randomly picked in [−0.07; 0]. From this position, the
hand-crafted policy was left to play until the car reached the objective (i.e., a
position greater than 0.5) at which point the episode ended. Enough episodes

were played (and the last one was truncated) so that the dataset DE contained
exactly n samples, with n successively equal to 10, 30, 100 and 300. With these
parameters, the expert is always able to reach the top on the first time it tries
to climb the hill on the right. Therefore, a whole part of the state space (when
the position is on the hill on the right and the speed is negative) is not visited
by the expert. This hole about the state space in the data will be dealt with
differently by the classifier and the IRL algorithms. The classifier will use its
generalization power to find a default action in this part of the state space,
while the IRL algorithms will devise a default reward; a (potentially untrained)
RL agent finding itself in this part of the state space will use the reward signal
to decide what to do, making use of new data available at that time.

In order to get a policy from the rewards given by SCIRL, CSI and RE, the
RL problem was solved by LSPI fed with a dataset Drandom of 1000 episodes of
length 5 with a starting point uniformly and randomly chosen in the whole state
space and actions picked at random. This dataset was also used by RE (and not
by SCIRL nor CSI).

The classifier for CSI was an off-the-shelf SVM6 which also was the classifier
we evaluate, the regressor of CSI was an off-the-shelf SVR7. RE and SCIRL need
features over the state space, we used the same evenly-spaced hand-tuned 7× 7
RBF network for both algorithms.

The objective criterion for success is the number of steps needed to attain
the goal when starting from a state picked at random ; the lesser the better. We
can see Fig. 1 that the optimal policies for the rewards found by SCIRL and CSI
very rapidly attain expert-level performance and outperform the optimal policy
for the reward of RE and the classification policy. When very few samples are
available, CSI does better than SCIRL (with such a low p-value for n = 10, see
Tab. 1a, the hypothesis that the mean performance is equal can be rejected);
SCIRL catches up when more samples are available. Furthermore, CSI required
very little engineering as we cascaded two off-the-shelf implementations whereas
SCIRL used hand-tuned features and a custom classifier.

6.3 Highway Driving Simulator

The setting of the experiment is a driving simulator inspired from a benchmark
already used in [17,18]. The agent controls a car that can switch between the
three lanes of the road, go off-road on either side and modulate between three
speed levels. At all timesteps, there will be one car in one of the three lanes.
Even at the lowest speed, the player’s car moves faster than the others. When
the other car disappears at the bottom of the screen, another one appears at
the top in a randomly chosen lane. It takes two transitions to completely change
lanes, as the player can move left or right for half a lane’s length at a time.
At the highest speed setting, if the other car appears in the lane the player
is in, it is not possible to avoid the collision. The main difference between the
6 http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
7 http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Table 1: Student or Welch test of mean equality (depending on whether a Bartlett
test of variance equality succeeds) p-values for CSI and SCIRL on the mountain
car (1a) and the highway driving simulator (1b). High values (> 1.0 × 10−02)
means that the hypothesis that the means are equal cannot be rejected.

(a) Mountain Car

Number of expert samples p-value

10 1.5e− 12
30 3.8e− 01
100 1.3e− 02
300 7.4e− 01

(b) Highway Driving

Number of expert samples p-value

9 3.0e− 01
49 8.9e− 03
100 1.8e− 03
225 2.4e− 05
400 2.0e− 50

0 50 100 150 200 250 300
Number of samples from the expert

50

100

150

200

250

A
ve

ra
ge

le
ng

th
of

ep
is

od
e

CSI
SCIRL
Relative Entropy
Classification
Expert

Fig. 1: Performance of various policies on the mountain car problem. This is the
mean over 100 runs.

0 50 100 150 200 250 300 350 400
Number of samples from the expert

−2

0

2

4

6

8

A
ve

ra
ge

pe
rf

or
m

an
ce

CSI
SCIRL
Relative Entropy
Classification
Random

(a) Mean performance over 100 runs on the
Highway driving problem.

50 100 150 200 250 300 350 400
Number of samples from the expert

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

A
ve

ra
ge

pe
rf

or
m

an
ce

CSI
SCIRL
Relative Entropy

(b) Zoom of Fig 2a showing the ranking of
the three IRL algorithms.

Fig. 2: Results on the highway driving problem.

original benchmark [17,18] and ours is that we made the problem more ergodic
by allowing the player to change speed whenever he wishes so, not just during
the first transition. If anything, by adding two actions, we enlarged the state-
action space and thus made the problem tougher. The reward function RE the
expert is trained by a DP algorithm on makes it go as fast as possible (high
reward) while avoiding collisions (harshly penalized) and avoiding going off-road
(moderately penalised). Any other situation receives a null reward.

The performance criterion for a policy π is the mean (over the uniform distri-
bution) value function with respect to RE : Es∼U [V πRE (s)]. Expert performance
averages to 7.74 ; we also show the natural random baseline that consists in
drawing a random reward vector (with a uniform law) and training an agent
on it. The reward functions found by SCIRL, CSI and RE are then optimized
using a DP algorithm. The dataset Drandom needed by RE (and neither by CSI
nor SCIRL) is made of 100 episodes of length 10 starting randomly in the state
space and following a random policy. the dataset DE is made of n episodes of
length n, with n ∈ {3, 7, 10, 15, 20}.

Results are shown Fig. 2. We give the values of Es∼U [V πRE (s)] with π being in
turn the optimal policy for the rewards given by SCIRL, CSI and RE, the policy
πC of the classifier (the very one the classification step of CSI outputs), and the
optimal policy for a randomly drawn reward. Performance for CSI is slightly but
definitively higher than for SCIRL (see the p-values for the mean equality test in
Tab. 1b, from 49 samples on), slightly below the performance of the expert itself.
Very few samples (100) are needed to reliably achieve expert-level performance.

It is very interesting to compare our algorithm to the behavior of a classifier
alone (respectively red and green plots on Fig. 2a). With the exact same data,
albeit the use of a very simple heuristics, the cascading approach demonstrates
far better performance from the start. This is a clear illustration of the fact
that using the Bellman equation to construct the data fed to the regressor and
outputting not a policy, but a reward function that can be optimized on the
MDP truly makes use of the information that the transitions (s, a, s′) bear (we
recall that the classifier only uses (s, a) couples). Furthermore, the classifier
whose results are displayed here is the output of the first step of the algorithm.
The classification performance is obviously not that good, which points to the
fact that our algorithm may be empirically more forgiving of classification errors
than our theoretical bound lets us expect.

7 Conclusion

We have introduced a new way to perform IRL by cascading two supervised
approaches. The expert is theoretically shown to be near-optimal for the reward
function the proposed algorithm outputs, given small classification and regres-
sion errors. Practical examples of classifiers and regressors have been given, and
two combinations have been empirically (on two classic benchmarks) shown to
be very resilient to dire lack of data on the input (only data from the expert
was used to retrieve the reward function), with the help of simple heuristics. On

both benchmarks, our algorithm is shown to outperform other state-of-the-art
approaches although SCIRL catches up on the mountain car. We plan on deep-
ening the analysis of the theoretical properties of our approach and on applying
it to real world robotics problems.

References

1. Abbeel, P., Ng, A.: Apprenticeship learning via inverse reinforcement learning. In:
Proc. ICML (2004)

2. Boularias, A., Kober, J., Peters: Relative entropy inverse reinforcement learning.
Proc. ICAPS 15, 20–27 (2011)

3. Dvijotham, K., Todorov, E.: Inverse optimal control with linearly-solvable MDPs.
In: Proc. ICML (2010)

4. Guermeur, Y.: A generic model of multi-class support vector machine. International
Journal of Intelligent Information and Database Systems (2011)

5. Klein, E., Geist, M., Piot, B., Pietquin, O.: Inverse Reinforcement Learning through
Structured Classification. In: Proc. NIPS. Lake Tahoe (NV, USA) (December 2012)

6. Melo, F., Lopes, M.: Learning from demonstration using mdp induced metrics.
Machine Learning and Knowledge Discovery in Databases pp. 385–401 (2010)

7. Melo, F., Lopes, M., Ferreira, R.: Analysis of inverse reinforcement learning with
perturbed demonstrations. In: Proc. ECAI. pp. 349–354. IOS Press (2010)

8. Neu, G., Szepesvári, C.: Training parsers by inverse reinforcement learning. Ma-
chine learning 77(2), 303–337 (2009)

9. Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. In: Proc. ICML.
pp. 663–670. Morgan Kaufmann Publishers Inc. (2000)

10. Puterman, M.: Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley & Sons, Inc. New York, NY, USA (1994)

11. Rasmussen, C., Williams, C.: Gaussian processes for machine learning, vol. 1. MIT
press Cambridge, MA (2006)

12. Ratliff, N., Bagnell, J., Srinivasa, S.: Imitation learning for locomotion and ma-
nipulation. In: International Conference on Humanoid Robots. pp. 392–397. IEEE
(2007)

13. Ratliff, N., Bagnell, J., Zinkevich, M.: Maximum margin planning. In: Proc. ICML.
p. 736. ACM (2006)

14. Regan, K., Boutilier, C.: Robust online optimization of reward-uncertain MDPs.
Proc. IJCAI’11 (2011)

15. Russell, S.: Learning agents for uncertain environments (extended abstract). In:
Annual Conference on Computational Learning Theory. p. 103. ACM (1998)

16. Sutton, R., Barto, A.: Reinforcement learning. MIT Press (1998)
17. Syed, U., Bowling, M., Schapire, R.: Apprenticeship learning using linear program-

ming. In: Proc. ICML. pp. 1032–1039. ACM (2008)
18. Syed, U., Schapire, R.: A game-theoretic approach to apprenticeship learning. Proc.

NIPS 20, 1449–1456 (2008)
19. Syed, U., Schapire, R.: A reduction from apprenticeship learning to classification.

Proc. NIPS 24, 2253–2261 (2010)
20. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured predic-

tion models: A large margin approach. In: Proc. ICML. p. 903. ACM (2005)

	A Cascaded Supervised Learning Approach to Inverse Reinforcement Learning

