P. Abbeel and A. Ng, Apprenticeship learning via inverse reinforcement learning, Twenty-first international conference on Machine learning , ICML '04, 2004.
DOI : 10.1145/1015330.1015430

URL : http://www.aicml.cs.ualberta.ca/banff04/icml/pages/papers/335.pdf

A. Boularias and J. Kober, Peters: Relative entropy inverse reinforcement learning, Proc. ICAPS, pp.20-27, 2011.

K. Dvijotham and E. Todorov, Inverse optimal control with linearly-solvable MDPs, Proc. ICML, 2010.

Y. Guermeur, A generic model of multi-class support vector machine, International Journal of Intelligent Information and Database Systems, vol.6, issue.6, 2011.
DOI : 10.1504/IJIIDS.2012.050094

URL : https://hal.archives-ouvertes.fr/hal-00596175

E. Klein, M. Geist, B. Piot, and O. Pietquin, Inverse Reinforcement Learning through Structured Classification, Proc. NIPS. Lake Tahoe (NV, USA), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778624

F. Melo and M. Lopes, Learning from demonstration using mdp induced metrics. Machine Learning and Knowledge Discovery in Databases pp, pp.385-401, 2010.
DOI : 10.1007/978-3-642-15883-4_25

URL : http://users.isr.ist.utl.pt/%7Emacl/myrefs/10-ecml-indmet.pdf

F. Melo, M. Lopes, and R. Ferreira, Analysis of inverse reinforcement learning with perturbed demonstrations, Proc. ECAI, pp.349-354, 2010.

G. Neu and C. Szepesvári, Training parsers by inverse reinforcement learning, Machine Learning, vol.285, issue.5, pp.303-337, 2009.
DOI : 10.1017/CBO9780511546921

URL : https://link.springer.com/content/pdf/10.1007%2Fs10994-009-5110-1.pdf

A. Ng and S. Russell, Algorithms for inverse reinforcement learning, Proc. ICML, pp.663-670, 2000.

M. Puterman, Markov decision processes: Discrete stochastic dynamic programming, 1994.
DOI : 10.1002/9780470316887

C. Rasmussen and C. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

URL : http://mlg.eng.cam.ac.uk/pub/pdf/Ras04.pdf

N. Ratliff, J. Bagnell, and S. Srinivasa, Imitation learning for locomotion and manipulation, International Conference on Humanoid Robots, pp.392-397, 2007.
DOI : 10.1109/ichr.2007.4813899

URL : http://www.ri.cmu.edu/pub_files/2007/11/53.pdf

N. Ratliff, J. Bagnell, and M. Zinkevich, Maximum margin planning, Proceedings of the 23rd international conference on Machine learning , ICML '06, 2006.
DOI : 10.1145/1143844.1143936

URL : http://www-clmc.usc.edu/publications/R/ratliff-ICML2006.pdf

K. Regan and C. Boutilier, Robust online optimization of reward-uncertain MDPs, Proc. IJCAI'11, 2011.

S. Russell, Learning agents for uncertain environments (extended abstract), Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, 1998.
DOI : 10.1145/279943.279964

URL : http://www.eecs.berkeley.edu/~russell/papers/colt98-uncertainty.pdf

R. Sutton and A. Barto, Reinforcement learning, 1998.
DOI : 10.1007/978-1-4615-3618-5

URL : https://hal.archives-ouvertes.fr/hal-00764281

U. Syed, M. Bowling, and R. Schapire, Apprenticeship learning using linear programming, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.1032-1039, 2008.
DOI : 10.1145/1390156.1390286

URL : http://icml2008.cs.helsinki.fi/papers/645.pdf

U. Syed and R. Schapire, A game-theoretic approach to apprenticeship learning, Proc. NIPS, pp.1449-1456, 2008.

U. Syed and R. Schapire, A reduction from apprenticeship learning to classification, Proc. NIPS, pp.2253-2261, 2010.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, Learning structured prediction models, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102464