M. Luko?evi?ius and H. Jaeger, Reservoir computing approaches to recurrent neural network training, Computer Science Review, vol.3, issue.3, pp.127-149, 2009.
DOI : 10.1016/j.cosrev.2009.03.005

D. Verstraeten, B. Schrauwen, M. Dhaene, and D. Stroobandt, An experimental unification of reservoir computing methods, Neural Networks, vol.20, issue.3, pp.391-403, 2007.
DOI : 10.1016/j.neunet.2007.04.003

Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, vol.5, issue.2, pp.157-166, 1994.
DOI : 10.1109/72.279181

URL : http://www.research.microsoft.com/~patrice/PDF/long_term.pdf

H. Jaeger, The " echo state " approach to analysing and training recurrent neural networks, Tech. Rep, 2001.

H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the Echo State Network approach , GMD-Forschungszentrum Informationstechnik, 2002.

H. Jaeger, Adaptive nonlinear system identification with echo state networks, Proceedings of the Neural Information Processing Systems Conference (NIPS'03), pp.593-600, 2003.

F. Wyffels, B. Schrauwen, and D. Stroobandt, Stable Output Feedback in Reservoir Computing Using Ridge Regression, Proceedings of the International Conference on Artificial Neural Networks (ICANN'08), pp.808-817, 2008.
DOI : 10.1007/978-3-540-87536-9_83

X. Dutoit, B. Schrauwen, J. Van-campenhout, D. Stroobandt, H. Van-brussel et al., Pruning and regularization in reservoir computing, Neurocomputing, vol.72, issue.7-9, pp.1534-1546, 2009.
DOI : 10.1016/j.neucom.2008.12.020

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, The Annals of statistics, pp.407-499, 2004.

]. D. Achlioptas, Database-friendly random projections, Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '01
DOI : 10.1145/375551.375608

URL : http://www.research.microsoft.com/~optas/papers/jl.ps

W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Extensions of lipschitz maps into Banach spaces, Israel Journal of Mathematics, vol.36, issue.2, pp.129-138, 1986.
DOI : 10.1090/conm/026/737400

H. Jaeger and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication, Science, vol.304, issue.5667, pp.78-80, 2004.
DOI : 10.1126/science.1091277

URL : http://www.columbia.edu/cu/biology/courses/w4070/Reading_List_Yuste/haas_04.pdf

A. F. Atiya and A. G. Parlos, New results on recurrent network training: unifying the algorithms and accelerating convergence, IEEE Transactions on Neural Networks, vol.11, issue.3, pp.697-709, 2000.
DOI : 10.1109/72.846741

URL : http://www.work.caltech.edu/amir/pub/ps/recurrent.pdf