D. Jarrell, D. Sisk, and L. Bond, Prognostics and Condition-Based Maintenance: A New Approach to Precursive Metrics, Nuclear Technology, vol.145, issue.3, pp.275-286, 2004.

A. Jardine, D. Lin, and D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, vol.20, issue.7, pp.1483-1510, 2006.
DOI : 10.1016/j.ymssp.2005.09.012

K. Worden, W. Staszewski, and J. Hensman, Natural computing for mechanical systems research: A tutorial overview, Mechanical Systems and Signal Processing, vol.25, issue.1, pp.4-111, 2011.
DOI : 10.1016/j.ymssp.2010.07.013

C. Hsu, C. Chang, L. , and C. , A Practical Guide to Support Vector Classification, 2003.

C. Rasmussen, W. , and C. , Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

W. Liu, J. Principe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction, 2010.
DOI : 10.1002/9780470608593

P. Samanta, W. Vesely, F. Hsu, and M. Subudly, Degradation modeling with application to ageing and maintenance effectiveness evaluations, p.5612, 1991.

J. Yan, C. Guo, W. , and X. , A dynamic multi-scale Markov model based methodology for remaining life prediction, Mechanical Systems and Signal Processing, vol.25, issue.4, pp.1364-1376, 2011.
DOI : 10.1016/j.ymssp.2010.10.018

R. Abernethy, The New Weibull Handbook, 1996.

D. Cox and D. Oakes, Analysis of Survival Data, 1984.

V. Kopnov, Optimal degradation process control by two-level policies, 1999.
DOI : 10.1016/s0951-8320(99)00006-x

C. Lam, R. S. Yeh, and Z. Ghahramani, Optimal maintenance-policies for deteriorating systems under various maintenance strategies, IEEE Transactions on Reliability, vol.43, issue.3, pp.423-430, 1994.
DOI : 10.1109/24.326439

J. Hamilton, Time Series Analysis, 1994.

G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu et al., A Particle Filtering-based Framework for On-line Fault Diagnosis and Failure Prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems Prognostic modelling options for remaining useful life estimation by industry, Mechanical Systems and Signal Processing, pp.1803-1836, 2006.

F. Gustaffson, S. Saha, . Uk, M. Moura, I. Lins et al., Particle filtering with dependent noise Predictive maintenance policy for oil well equipment in case of scaling through support vector machinesAdvances in Safety, Reliability and Risk Management -Proceedings of the European Safety and Reliability Conference, proceedings of the 13th Conference on Information Fusion Crack Detection in a Rotor Dynamic System by Vibration Monitoring. Journal of Engineering for Gas Turbines and Power, pp.26-29, 2005.

R. Huang, L. Xi, X. Li, R. Liu, C. Qiu et al., Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods, Mechanical Systems and Signal Processing, pp.193-207, 2007.
DOI : 10.1016/j.ymssp.2005.11.008

T. Harris, S. Seker, E. Ayaz, and E. Turkcan, Rolling Bearing Analysis Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery, 1991.

J. Carney, P. Cunningham, and U. Bhagwan, Confidence and prediction intervals for neural network ensembles, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), pp.10-16, 1999.
DOI : 10.1109/IJCNN.1999.831133

L. Breiman, Bagging predictors, Machine Learning, pp.123-140, 1996.
DOI : 10.1007/BF00058655

F. Cadini, E. Zio, A. , and D. , Model-based Monte Carlo state estimation for condition-based component replacement, Reliability Engineering & System Safety, vol.94, issue.3, pp.752-758, 2009.
DOI : 10.1016/j.ress.2008.08.003

D. Nix and A. Weigend, Estimating the mean and variance of the target probability distribution, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp.55-60, 1994.
DOI : 10.1109/ICNN.1994.374138

L. Breiman, G. Stuart, E. Bienenstock, and R. Doursat, Combining predictors Combining Artificial Neural Nets-Ensemble and Modular Multi-net Systems Practical Confidence and Prediction Intervals Neural Networks and the bias/variance dilemma, Advances in Neural Information Processing Systems 9, pp.31-50, 1992.

D. Montgomery, G. Runger, N. Hubele, A. Saxena, K. Goebel et al., Engineering Statistics Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation, International Conference on Prognostics and Heath Management, 2008.