T. Alamo, J. M. Bravo, and E. F. Camacho, Guaranteed state estimation by zonotopes, Automatica, vol.41, pp.1035-1043, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00632977

T. Alamo, R. Tempo, D. R. Ramírez, and E. F. Camacho, A new vertex result for robustness problems with interval matrix uncertainty, Systems and Control Letters, vol.57, pp.474-481, 2008.

M. Althoff, O. Stursberg, and M. Buss, Reachability analysis of linear systems with uncertain parameters and inputs, Proc. of the 46th IEEE CDC, vol.41, pp.726-732, 2007.

D. P. Bertsekas and I. B. Rhodes, Recursive state estimation for a setmembership description of uncertainty, IEEE TAC, vol.16, issue.2, pp.117-128, 1971.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in system and control theory, 1994.

R. G. Brown and P. Y. Hwang, Introduction to random signals and applied Kalman filtering, 1997.

F. L. Chernous'ko, State estimation for dynamic systems, 1994.

C. Combastel, A state bounding observer based on zonotopes, Proc. of ECC, 2003.

C. Combastel, Q. Zhang, and A. Lalami, Fault diagnosis based on the enclosure of parameters estimated with an adaptive observer, Proc. of the 17th World Congress IFAC, pp.7314-7319, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00854789

C. Durieu, E. Walter, and B. Polyak, Multi-input multi-output ellipsoidal state bounding, JOTA, vol.111, issue.2, pp.273-303, 2001.

L. J. Guibas, A. Nguyen, and L. Zhang, Zonotopes as bounding volume, Proc. of the Symposium on Discrete Algorithm, pp.803-812, 2005.

D. Henrion and J. B. Lasserre, Inner approximations for polynomial matrix inequalities and robust stability regions, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00588754

R. E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME-Journal of Basic Engineering, vol.82, pp.35-45, 1960.

M. Kocvara and S. Stingl, PENNON -a code for convex nonlinear and semidefinite programming, Optimization Methods and Software, vol.18, issue.3, pp.317-333, 2003.

W. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing, vol.61, pp.47-67, 1998.

A. B. Kurzhanski and I. Vályi, Ellipsoidal calculus for estimation and control, 1996.

V. Le, T. Alamo, E. Camacho, C. Stoica, and D. Dumur, A new approach for guaranteed state estimation by zonotopes, Proc. of the 18th World Congress IFAC, pp.9242-9247, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00632977

V. T. Le, T. Alamo, E. F. Camacho, C. Stoica, and D. Dumur, Zonotopic set-membership estimation for interval dynamic systems, Proc. of the 2012 ACC, pp.6787-6792, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683897

W. Mao and J. Chu, Quadratic stability and stabilization of dynamic interval systems, IEEE TAC, vol.48, issue.6, pp.1007-1012, 2003.

P. S. Maybeck, Stochastic models, estimation and control, 1979.

M. Milanese, J. Norton, S. Piet-lananier, and E. Walter, Bounding approach to system identification, 1996.

K. Plarre and F. Bullo, On Kalman filtering for detectable systems with intermittent observations, IEEE TAC, vol.54, issue.2, pp.386-390, 2008.

B. T. Polyak, S. A. Nazin, C. Durieu, and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica, vol.40, pp.1171-1179, 2004.

V. Puig, P. Cugueró, and J. Quevedo, Worst-case estimation and simulation of uncertain discrete-time systems using zonotopes, Proc. of ECC. Portugal, 2001.

F. C. Schweppe, Recursive state estimation: unknown but bounded errors and system inputs, IEEE TAC, vol.13, issue.1, pp.22-28, 1968.

H. Sorenson, Special issue on applications of Kalman filtering, IEEE TAC, vol.28, issue.3, pp.253-434, 1983.

F. Stoican, S. Olaru, J. D. Doná, and M. Seron, Zonotopic ultimate bounds for linear systems with bounded disturbances, Proc. of the 18th World Congress IFAC, pp.9224-9229, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00592373

A. Vicino and G. Zappa, Sequential approximation of feasible parameter sets for identification with set membership uncertainty, IEEE TAC, vol.41, pp.774-785, 1996.

E. Walter and H. Piet-lahanier, Exact recursive polyhedral description of the feasible parameter set for bounded-error models, IEEE TAC, vol.34, issue.8, pp.911-915, 1989.

S. H. Witsenhausen, Sets of possible states of linear systems given perturbed observations, IEEE TAC, vol.13, pp.556-558, 1968.