B. Abbasi, S. Hosseinifard, and D. Coit, A neural network applied to estimate burr {XII} distribution parameters, Reliability Engineering & System Safety 95, pp.647-654, 2010.

I. Aizenberg and C. Moraga, Multilayer feedforward neural network based on multi-valued neurons (mlmvn) and a backpropagation learning algorithm , Soft Computing -A Fusion of Foundations, Methodologies and Applications, vol.11, pp.169-183, 2007.

I. Aizenberg, D. V. Paliy, J. M. Zurada, and J. T. Astola, Blur Identification by Multilayer Neural Network Based on Multivalued Neurons, IEEE Transactions on Neural Networks, vol.19, issue.5, pp.883-898, 2008.
DOI : 10.1109/TNN.2007.914158

I. N. Aizenberg, Complex-Valued Neural Networks with Multi-Valued Neurons, 2011.
DOI : 10.1007/978-3-642-20353-4

A. Z. Garni and A. Jamal, Artificial neural network application of modeling failure rate for Boeing 737 tires, Quality and Reliability Engineering International, vol.13, issue.8, pp.209-219, 2011.
DOI : 10.1002/qre.1114

A. B. Andre, E. Beltrame, and J. Wainer, A COMBINATION OF SUPPORT VECTOR MACHINE AND k-NEAREST NEIGHBORS FOR MACHINE FAULT DETECTION, Applied Artificial Intelligence, vol.19, issue.2, pp.36-49, 2013.
DOI : 10.1080/08839514.2013.747370

A. G. De-araujo-goes, M. Alvarenga, and P. F. Melo, NAROAS: a neural network-based advanced operator support system for the assessment of systems reliability, Reliability Engineering & System Safety, vol.87, issue.2, pp.149-161, 2005.
DOI : 10.1016/j.ress.2004.01.010

V. Bagdonavicius and M. S. Nikulin, Estimation in degradation models with explanatory variables, Lifetime Data Analysis, vol.7, issue.1, pp.85-103, 2001.
DOI : 10.1023/A:1009629311100

M. Barakat, D. Lefebvre, M. Khalil, F. Druaux, and O. Mustapha, Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues, International Journal of Machine Learning and Cybernetics, vol.5, issue.16, pp.217-233, 2013.
DOI : 10.1007/s13042-012-0089-5

W. Caesarendra, A. Widodo, T. Pham-hong, Y. Bo-suk, and J. D. Setiawan, Combined probability approach and indirect data-driven method for bearing degradation prognostics, Reliability, IEEE Transactions on, pp.60-74, 2011.
DOI : 10.1109/tr.2011.2104716

P. Chang, K. Lin, and P. Pf, Hybrid learning fuzzy neural models in forecasting engine system reliability, Fifth Asia Pacific Industrial Engineering and Management Systems Conference, pp.2361-2366, 2004.

S. Chatterjee and S. Bandopadhyay, Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine, Expert Systems with Applications, vol.39, issue.12, pp.10943-10951, 2012.
DOI : 10.1016/j.eswa.2012.03.030

K. Y. Chen, Forecasting systems reliability based on support vector regression with genetic algorithms, Reliability Engineering & System Safety, vol.92, issue.4, pp.423-432, 2007.
DOI : 10.1016/j.ress.2005.12.014

Z. Chen, Bayesian filtering: From kalman filters to particle filters, and beyond, Statistics, vol.182, pp.1-69, 2003.

X. Dang and T. Jiang, Reliability prediction based on degradation measure distribution and wavelet neural network, Prognostics and System Health Management (PHM), 2012 IEEE Conference on, pp.1-5, 2012.

P. Deuszkiewicz and S. Radkowski, ON-LINE CONDITION MONITORING OF A POWER TRANSMISSION UNIT OF A RAIL VEHICLE, Mechanical Systems and Signal Processing, vol.17, issue.6, pp.1321-1334, 2003.
DOI : 10.1006/mssp.2002.1578

J. Du, S. Wang, and H. Zhang, Layered clustering multi-fault diagnosis for hydraulic piston pump, Mechanical Systems and Signal Processing, vol.36, issue.2, 2012.
DOI : 10.1016/j.ymssp.2012.10.020

O. F. Eker, F. Camci, A. Guclu, H. Yilboga, M. Sevkli et al., A Simple State-Based Prognostic Model for Railway Turnout Systems, IEEE Transactions on Industrial Electronics, vol.58, issue.5, pp.58-1718, 2011.
DOI : 10.1109/TIE.2010.2051399

S. Fararooy and J. Allan, On-line condition monitoring of railway equipment using neural networks, IEE Colloquium on `Advanced Condition Monitoring Systems for Railways', pp.1-2
DOI : 10.1049/ic:19950983

Z. U. Gondal and J. Lee, Reliability assessment using feed-forward neural network-based approximate meta-models, Proceedings of the Institution of Mechanical Engineers, 2012.
DOI : 10.1177/1748006X11433661

N. J. Gordon, D. J. Salmond, and A. F. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F (Radar and Signal Processing, pp.107-113, 1993.
DOI : 10.1049/ip-f-2.1993.0015

C. Hu, B. D. Youn, P. Wang, and J. T. Yoon, Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life, Reliability Engineering & System Safety, vol.103, pp.120-135, 2012.
DOI : 10.1016/j.ress.2012.03.008

C. H. Hu, X. S. Si, and J. B. Yang, System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization, Expert Systems with Applications, vol.37, issue.3, pp.2550-2562, 2010.
DOI : 10.1016/j.eswa.2009.08.024

Q. Hu, M. Xie, S. Ng, and G. Levitin, Robust recurrent neural network modeling for software fault detection and correction prediction, Reliability Engineering & System Safety, vol.92, issue.3, pp.332-340, 2007.
DOI : 10.1016/j.ress.2006.04.007

J. E. Hurtado and D. A. Alvarez, Neural-network-based reliability analysis: a comparative study, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.1-2, pp.113-132, 2001.
DOI : 10.1016/S0045-7825(01)00248-1

A. Jamali, M. Ghamati, B. Ahmadi, and N. , Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA), Engineering Applications of Artificial Intelligence, vol.26, issue.2, pp.714-723, 2013.
DOI : 10.1016/j.engappai.2012.11.004

G. Jin, D. E. Matthews, and Z. Zhou, A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft, Reliability Engineering & System Safety, vol.113, pp.7-20, 2013.
DOI : 10.1016/j.ress.2012.12.011

B. Kaushik, N. Kaur, and A. K. Kohli, Achieving maximum reliability in fault tolerant network design for variable networks, Applied Soft Computing, vol.13, issue.7, 2013.
DOI : 10.1016/j.asoc.2013.02.017

M. Khatibinia, M. J. Fadaee, J. Salajegheh, and E. Salajegheh, Seismic reliability assessment of RC structures including soil???structure interaction using wavelet weighted least squares support vector machine, Reliability Engineering & System Safety, vol.110, pp.22-33, 2013.
DOI : 10.1016/j.ress.2012.09.006

]. Z. Kurd and T. P. Kelly, Using fuzzy self-organising maps for safety critical systems, Reliability Engineering & System Safety, vol.92, issue.11, pp.1563-1583, 2007.
DOI : 10.1016/j.ress.2006.10.005

N. Lehrasab, H. P. Dassanayake, C. Roberts, S. Fararooy, and C. J. Goodman, Industrial fault diagnosis: pneumatic train door case study, Proceedings of the Institution of Mechanical Engineers, pp.175-183, 2002.
DOI : 10.1243/095440902760213602

B. Li, M. Y. Chow, Y. Tipsuwan, and J. C. Hung, Neural-network-based motor rolling bearing fault diagnosis, IEEE Transactions on Industrial Electronics, vol.47, issue.5, pp.1060-1069, 2000.
DOI : 10.1109/41.873214

I. D. Lins, M. D. Moura, E. Zio, and E. L. Droguett, A particle swarm-optimized support vector machine for reliability prediction, Quality and Reliability Engineering International, vol.150, issue.2, pp.141-158, 2012.
DOI : 10.1002/qre.1221

URL : https://hal.archives-ouvertes.fr/hal-00620251

Y. Liu, H. Z. Huang, and D. Ling, Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment, International Journal of Systems Science, vol.21, issue.3, pp.545-555, 2013.
DOI : 10.1016/0165-0114(78)90029-5

S. Lolas and O. A. Olatunbosun, Prediction of vehicle reliability performance using artificial neural networks, Expert Systems with Applications, vol.34, issue.4, pp.2360-2369, 2008.
DOI : 10.1016/j.eswa.2007.03.014

G. Marichal, M. Artes, J. G. Prada, and O. Casanova, Extraction of rules for faulty bearing classification by a Neuro-Fuzzy approach, Mechanical Systems and Signal Processing, vol.25, issue.6, pp.2073-2082, 2011.
DOI : 10.1016/j.ymssp.2011.01.014

M. D. Moura, E. Zio, I. D. Lins, and E. Droguett, Failure and reliability prediction by support vector machines regression of time series data, Reliability Engineering & System Safety, pp.96-1527, 2011.

M. Nourelfath and N. Nahas, Quantized hopfield networks for reliability optimization, Reliability Engineering & System Safety, vol.81, issue.2, pp.191-196, 2003.
DOI : 10.1016/S0951-8320(03)00097-8

P. F. Pai, System reliability forecasting by support vector machines with genetic algorithms, Mathematical and Computer Modelling, vol.43, issue.3-4, pp.262-274, 2006.
DOI : 10.1016/j.mcm.2005.02.008

Y. Peng, H. Wang, J. Wang, D. Liu, and X. Peng, A modified echo state network based remaining useful life estimation approach, 2012 IEEE Conference on Prognostics and Health Management, pp.2012-2013
DOI : 10.1109/ICPHM.2012.6299524

J. Reifman, Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants, Nuclear Technology, vol.119, pp.76-97, 1997.

C. M. Rocco and S. , Singular spectrum analysis and forecasting of failure time series, Reliability Engineering & System Safety, vol.114, pp.126-136, 2013.
DOI : 10.1016/j.ress.2013.01.007

C. M. Rocco, S. , and E. Zio, A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems, Reliability Engineering & System Safety, vol.92, issue.5, pp.593-600, 2007.
DOI : 10.1016/j.ress.2006.02.003

Z. Sadovsky and C. G. Soares, Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections, Reliability Engineering & System Safety, vol.96, issue.6, pp.713-717, 2011.
DOI : 10.1016/j.ress.2011.02.010

A. E. Smith, D. W. Coit, and L. Yun-chia, Neural network models to anticipate failures of airport ground transportation vehicle doors, Automation Science and Engineering, IEEE Transactions on, vol.7, pp.183-188, 2010.

K. L. Son, M. Fouladirad, A. Barros, E. Levrat, and B. Iung, Remaining useful life estimation based on stochastic deterioration models: A comparative study, Reliability Engineering & System Safety, vol.112, pp.165-175, 2013.
DOI : 10.1016/j.ress.2012.11.022

C. Srivaree-ratana, A. Konak, and A. E. Smith, Estimation of all-terminal network reliability using an artificial neural network, Computers & Operations Research, vol.29, issue.7, pp.849-868, 2002.
DOI : 10.1016/S0305-0548(00)00088-5

M. Suliman and M. A. , Neural network realization of Markov reliability and fault-tolerance models, Microelectronics Reliability, vol.31, issue.1, pp.141-147, 1991.
DOI : 10.1016/0026-2714(91)90358-E

R. M. Tallam, T. G. Habetler, and R. G. Harley, Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics, IEEE Transactions on Power Electronics, vol.17, issue.6, pp.1089-1095, 2002.
DOI : 10.1109/TPEL.2002.805611

P. Tamilselvan and P. Wang, Failure diagnosis using deep belief learning based health state classification, Reliability Engineering & System Safety, vol.115, pp.124-135, 2013.
DOI : 10.1016/j.ress.2013.02.022

P. Tamilselvan and P. Wang, Failure diagnosis using deep belief learning based health state classification, Reliability Engineering & System Safety, vol.115, pp.124-135, 2013.
DOI : 10.1016/j.ress.2013.02.022

W. L. Tan, N. M. Nor, M. Z. Abu-bakar, Z. Ahmad, and S. A. Sata, Optimum parameters for fault detection and diagnosis system of batch reaction using multiple neural networks, Journal of Loss Prevention in the Process Industries, vol.25, issue.1, pp.138-141, 2012.
DOI : 10.1016/j.jlp.2011.08.002

A. Tawafan, M. B. Sulaiman, and Z. B. Ibrahim, Adaptive Neural Subtractive Clustering Fuzzy Inference System for the Detection of High Impedance Fault on Distribution Power System, IAES International Journal of Artificial Intelligence (IJ-AI), vol.1, issue.2, pp.63-72, 2012.
DOI : 10.11591/ij-ai.v1i2.425

Z. Tian, L. Wong, and N. Safaei, A neural network approach for remaining useful life prediction utilizing both failure and suspension histories, Mechanical Systems and Signal Processing, vol.24, issue.5, pp.1542-1555, 2010.
DOI : 10.1016/j.ymssp.2009.11.005

G. Vachtsevanos, Intelligent fault diagnosis and prognosis for engineering systems, 2006.
DOI : 10.1002/9780470117842

M. L. Wong, L. B. Jack, and A. K. Nandi, Modified self-organising map for automated novelty detection applied to vibration signal monitoring, Mechanical Systems and Signal Processing, vol.20, issue.3, pp.593-610, 2006.
DOI : 10.1016/j.ymssp.2005.01.008

K. Xu, M. Xie, L. C. Tang, and S. L. Ho, Application of neural networks in forecasting engine systems reliability, Applied Soft Computing, vol.2, issue.4, pp.255-268, 2003.
DOI : 10.1016/S1568-4946(02)00059-5

R. C. Yam, P. W. Tse, L. Li, and P. Tu, Intelligent Predictive Decision Support System for Condition-Based Maintenance, The International Journal of Advanced Manufacturing Technology, vol.17, issue.5, pp.383-391, 2001.
DOI : 10.1007/s001700170173

D. M. Yang, A. F. Stronach, P. Macconnell, and J. Penman, THIRD-ORDER SPECTRAL TECHNIQUES FOR THE DIAGNOSIS OF MOTOR BEARING CONDITION USING ARTIFICIAL NEURAL NETWORKS, Mechanical Systems and Signal Processing, vol.16, issue.2-3, pp.391-411, 2002.
DOI : 10.1006/mssp.2001.1469

E. Zio, M. Broggi, L. R. Golea, and N. Pedroni, Failure and reliability predictions by infinite impulse response locally recurrent neural networks, Chemical engineering transactions, vol.26, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777485