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Abstract

In parameter estimation, it is often desirable to supplement the estimates with an assessment of their quality. A new family
of methods proposed by Campi et al. for this purpose is particularly attractive, as it makes it possible to obtain exact, non-
asymptotic confidence regions under relatively mild assumptions on the noise distribution. A bottleneck of this approach,
however, is the numerical characterization of these confidence regions. So far, it has been carried out by gridding, which
provides no guarantee as to its results and is only applicable to low dimensional spaces. The aim of this paper is to show how
interval analysis can contribute to removing this bottleneck.
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1 Introduction

When a vector p of parameters of some approximate
mathematical model is estimated from a noisy data
vector y, this is usually via the minimization of some
cost function J (p), for instance J (p) = ‖y − ym (p)‖22,
where ym (p) is the vector of model outputs, assumed
here to be a deterministic function of p and ‖·‖2 is a
(possibly weighted) ℓ2 norm. Then

p̂ = argmin
p

J (p) . (1)

This procedure is fraught with difficulties in the general
case. The parameters of the model may not be identi-
fiable uniquely (i.e., there may be several values of p̂
that yield exactly the same vector ym (p̂), in which case
there are several global minimizers of the cost function).
The numerical algorithm used to compute p̂ may also
get trapped at a parasitic local minimizer because of in-
adequate initialization.

⋆ This work has been partly supported by the ANR CPP.
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Even if a single numerical vector p̂ is obtained and if y
and ym (p̂) are reassuringly similar, it would be naive to
consider p̂ as the final answer to the estimation prob-
lem. One should instead attempt to attach some qual-
ity tag to p̂ by assessing the reliability of the numerical
values thus obtained. This is especially important if one
wants to estimate physically meaningful parameters of
some knowledge-based model in physics, chemistry, bi-
ology, etc., or if decisions have to be taken on the basis
of the numerical values of the model parameters to tune
controllers or to detect faults, for instance. A key issue
is drawing conclusions that are as little prejudiced as
possible, and the approach recently proposed by Campi
et al. for this purpose [1–3] is particularly attractive,
as it makes it possible to obtain exact, non-asymptotic
confidence regions under relatively mild assumptions on
the noise distribution. A difficulty with this approach,
however, is the numerical characterization of these con-
fidence regions. So far, it has been carried out by grid-
ding, which provides no guarantee as to its results and
is only applicable to low dimensional spaces.

The aim of this paper is to show how interval analysis
can contribute to adressing this difficulty, by providing
guaranteed results, as well as results in high dimensional
spaces. The approaches Leave-out Sign-dominant Cor-
related Regions (LSCR) [1, 3] and Sign-Perturbed Sums
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(SPS) [2] recently proposed by Campi et al. are briefly re-
called in Section 2. Section 3 shows how interval analysis
can be used to characterize the exact confidence regions
defined by LSCR and SPS in a global and guaranteed
way. Examples are treated in Section 4, and conclusions
are drawn in Section 5.

2 LSCR and SPS

The most striking feature of LSCR and SPS is that they
avoid a large number of the usual assumptions about the
noise corrupting the data yet provide an exact charac-
terization of parameter uncertainty in non-asymptotic
conditions. It is not necessary to assume that the noise
is Gaussian (or that it follows any other specific proba-
bility distribution for that matter). Nor is it necessary
to assume that a bound δ on the size of the acceptable
errors is known. LSCR and SPS are summarized in the
next two sections. Both require the noise samples to be
independently distributed with distributions symmetric
with respect to zero.

2.1 LSCR

LSCR [1] defines a regionΘ to which the parameter vec-
tor p∗ of the true system belongs with a specified prob-
ability. Let εt(p) be a prediction error, such that εt(p

∗)
is a realization of the noise corrupting the data at time
t. It may, for instance, be the difference between some
output measurement yt, and the corresponding model
output ymt (p). The procedure for computing one such
confidence region is as follows:

(1) Select two integers r > 0 and q > 0.
(2) For t = 1 + r, . . . , k + r = n, compute

cεt−r,r (p) = εt−r (p) εt (p) , (2)

(3) Compute

sεi,r (p) =
∑

k∈Ii

cεk,r (p) , i = 1, . . . ,m, (3)

where Ii is a subset of a set I of indexes and the
collection G of these subsets Ii, i = 1, . . . ,m, forms
a group under the symmetric difference operation,
i.e., (Ii ∪ Ij)− (Ii ∩ Ij) ∈ G.

(4) Find the setΘε
r,q such that at least q of the functions

sεi,r (p) are larger than 0 and at least q are smaller
than 0.

The probability that p∗ belongs to Θε
r,q is

Pr
(
p∗ ∈ Θε

r,q

)
= 1− 2q/m. (4)

The shape and size ofΘε
r,q depend not only on the values

given to q and r but also on the group G and its number

of elements m. A procedure for generating a group of
appropriate size is suggested in [4].

The set Θε
r,q may be defined more formally as

Θε
r,q = Θε,1

r,q ∩Θε,2
r,q , (5)

with, for j = 1, 2,

Θε,j
r,q =

{
p ∈ P such that

m∑

i=1

τ ε,ji (p) > q

}
, (6)

where P is the prior domain for p and where

τ ε,ji (p) =

{
1 if (−1)jsεi,r (p) > 0,

0 else.
(7)

The set Θε,1
r,q contains all values of p ∈ P such that

at least q of the functions sεi,r (p) are smaller than 0,

whereas Θε,2
r,q contains all values of p ∈ P such that at

least q of the functions sεi,r (p) are larger than 0.

When the model studied is driven by an input ut, one
may obtain a similar confidence region by substituting
cut−s,s (p) = ut−s (p) εt (p) for c

ε
t−r,r (p) = εt−r (p) εt in

the procedure above, thus replacing autocorrelations by
intercorrelations. One then computes a set Θu

s,q, again

such that Pr
(
p∗ ∈ Θu

s,q

)
= 1− 2q/m.

The fact that the set Θε
r,q (or Θ

u
r,q) obtained by this ap-

proach is exact does not mean that its volume is mini-
mal, and the resulting confidence region may turn out to
be much too large to be useful. One may then intersect
several such regions. For a given value of q and m, as-
sume that nε confidence regions Θ

ε
r,q and nu confidence

regions Θu
s,q have been obtained for nε values of r and

nu values of s. The probability that p∗ belongs to the
intersection Θ of these (nε + nu) regions then satisfies
Pr (p∗ ∈ Θ) > 1− (nε + nu)2q/m. The price to be paid
for taking the intersection of several confidence regions
is that the probability that p∗ belongs to the resulting
confidence region is no longer known exactly, as only a
lower bound for this probability is available.

2.2 SPS

SPS [2] also provides a confidence region to which p∗ be-
longs with a specified probability, by exploiting the sym-
metry of the noise distribution and the independence be-
tween noise samples. It is designed for linear regression,
where

yt = ϕT
t p

∗ + wt, t = 1, . . . , n, (8)

with ϕt a known regression vector that does not de-
pend on the unknown parameters. It computes an exact
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confidence region for p∗ around the least-squares esti-
mate p̂, which is the solution to the normal equations∑n

t=1 ϕt

(
yt −ϕT

t p̂
)
= 0. For a generic p, define

s0 (p) =

n∑

t=1

ϕt

(
yt −ϕT

t p
)
, (9)

and the sign-perturbed sums

si (p) =

n∑

t=1

αi,tϕt

(
yt −ϕT

t p
)
, (10)

where i = 1, . . . ,m − 1 and αi,t are independent and
identically distributed (i.i.d.) random signs, so αi,t = ±1
with equal probability, and

zi (p) = ‖si (p)‖
2
2 , i = 0, . . . ,m− 1. (11)

A confidence regionΣq is obtained as the set of all values
of p such that z0 (p) is not among the q largest values of

(zi (p))
m−1
i=0 . In [2], it has been shown that p∗ belongs to

Σq with exact probability 1 − q/m. Σq may be defined
more formally as

Σq =

{
p ∈ P such that

m−1∑

i=1

τi (p) > q

}
(12)

where

τi (p) =

{
1 if zi (p)− z0 (p) > 0,

0 else.
(13)

This is justified by the fact that if
∑m−1

i=1 τi (p) > q, then
one has τi (p) = 1 for at least q out of them−1 functions
τi (p). As a consequence, there are at least q functions
zi (p) such that zi (p) > z0 (p) and z0 (p) is not among

the q largest values of (zi (p))
m−1
i=0 .

3 Guaranteed characterization via interval
analysis

In LSCR and SPS, one has to characterize a set or in-
tersections of sets defined as

Ψq =

{
p ∈ P such that

m∑

i=1

τi (p) > q

}
, (14)

where τi (p) is some indicator function

τi (p) =

{
1 if fi (p) > 0,

0 else,
(15)

and where fi (p) depends on the model structure, the
measurements, and the parameter vector p.

Characterizing Ψq may be alternatively formulated as a
set-inversion [8] problem

Ψq = P ∩ τ−1 ([q,m]) , (16)

with

τ (p) =
m∑

i=1

τi (p) , (17)

which may be efficiently solved via interval analysis [7,9]
using the SIVIA algorithm [7]. For that purpose, inclu-
sion functions for the τi’s and consequently for the fi’s
are required.

SIVIA recursively partitions P into boxes (vectors of in-
tervals) proved to belong toΨq, boxes proved to have no
intersection withΨq, and undetermined boxes for which
no conclusion can be obtained. SIVIA bisects undeter-
mined boxes until their width is less than some precision
parameter ε.

3.1 Contractors for guaranteed characterization

Indetermination often results from range overestimation
by inclusion functions. As a consequence, boxes have to
be bisected by SIVIA many times to allow one to con-
clude on the position of the resulting boxes with respect
to Ψq. This may entail an intractable computational
complexity, even for a moderate dimension of p.

Contractors [7] partly address this issue. Consider a set-
inversion problem where one has to characterize the set

X = [x] ∩ f−1 (Y) , (18)

with f : D ⊂ R
n → R

m, Y ⊂ R
m, and [x] ⊂ D some

initial search box for X. A contractor Cf ,Y associated
with the generic set-inversion problem (18) is a function
taking a box [x] as input and returning a box

Cf ,Y ([x]) ⊂ [x] (19)

such that
[x] ∩ X = Cf ,Y ([x]) ∩ X, (20)

so no part of X in [x] is lost. It allows parts of the can-
didate box [x] that do not belong to X to be eliminated,
without bisection. Various contractors have been pro-
posed in the literature, e.g., the contractors by inter-
val constraint propagation, by parallel linearization, the
Newton contractor, the Krawczyk contractor, etc. [7].

In the problems considered here, the role of x is taken by
p. The fact that the function τ introduced in (17) is not
differentiable forbids the use of most classic contractors,
so a specific contractor is needed. The new contractor
proposed here is implemented in two steps. It assumes
that the functions fi involved in (15) are differentiable.
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First, a set ofm possibly overlapping subboxes of [p] are
built, trying to remove all values of p from [p] such that
fi (p) < 0, i = 1, . . . ,m, see Sections 3.1.1 and 3.1.2.
Second, the union of all non-empty intersections of at
least q of these boxes is computed to get a possibly con-
tracted box, see Section 3.1.3.

3.1.1 Contractor for LSCR and SPS

The first step uses the centered form of fi, which, for
some m ∈ [p], may be written as

[fi,c] ([p]) = fi (m) + ([p]−m)
T
[gi] ([p]) (21)

= fi (m) +

np∑

j=1

([pj ]−mj) [gi,j ] ([p]) , (22)

where gi is the gradient of fi and [gi] ([p]) is the natural
inclusion function for gi, see [7]. Using (22), we build a
contractor Cfi,[0,∞[ for the set of all values of p ∈ [p]
such that fi (p) > 0, as follows.

With the k-th component [pk] of [p], when 0 /∈ [gi,k] ([p]),
Cfi,[0,∞[ associates the contracted interval

[
p′i,k
]
= [pk] ∩

((
([fi,c] ([p]) ∩ [0,∞[)− fi (m)

−

np∑

j=1,j 6=k

([pj ]−mj) [gi,j ] ([p])

)
/ [gi,k] ([p]) +mk

)
.

(23)

When 0 ∈ [gi,k] ([p]), Cfi,[0,∞[ leaves [pk] unchanged, i.e.,

[
p′i,k
]
= [pk] . (24)

Due to the pessimism of centered forms on large boxes,
the contractor Cfi,[0,∞[ becomes efficient only when the
box to contract is small enough.

Considering them functions fi and applying all the con-
tractors Cfi,[0,∞[, i = 1, . . . ,m, to [p], one obtains a list
of m possibly contracted boxes

L =
{
Cf1,[0,∞[ ([p]) , . . . , Cfm,[0,∞[ ([p])

}
(25)

= {[p′
1] , . . . , [p

′
m]} . (26)

Some of these boxes may be empty, in which case, [p′
i] =

∅ indicates that there is no p ∈ [p] such that fi (p) > 0.
Our aim is to evaluate a subbox [p′] of [p] such that
Ψq ∩ [p′] = Ψq ∩ [p].

3.1.2 Contractor for SPS

We take advantage of the fact that the functions si (p),
i = 0, . . . ,m are affine in p to reduce the number of

occurrences of p in their formal expression, and thus
to reduce the pessimism of the corresponding inclusion
functions. Equation (9) is rewritten as

s0 (p) = b0 −A0p (27)

with b0 =
∑n

t=1 ytϕt and A0 =
∑n

t=1 ϕtϕ
T
t . Similarly,

(10) is rewritten as

si (p) = bi −Aip (28)

with bi =
∑n

t=1 αi,tytϕt and Ai =
∑n

t=1 αi,tϕtϕ
T
t .

Equations (11), (27), (28), and the fact that theAi’s are
symmetric imply that

zi (p)− z0 (p) = pT
(
A2

i −A2
0

)
p− 2

(
bT
i Ai − bT

0 A0

)
p

+
(
bT
i bi − bT

0 b0

)
. (29)

The matrices A2
i −A2

0 are symmetric and may thus be
diagonalized as A2

i − A2
0 = UT

i DiUi, where Ui is an
orthonormal matrix (i.e., such that UT

i = U−1
i ), and

Di = diag
(
di,1, . . . , di,np

)
is a diagonal matrix. With

the change of variables π = Uip, (29) becomes

zi (p)− z0 (p) = πTDiπ − 2βT
i π + γi, (30)

where βT
i =

(
bT
i Ai − bT

0 A0

)
UT

i and γi = bT
i bi −

bT
0 b0. Then, provided that di,j 6= 0 for j = 1, . . . , np, (30)

can be rewritten as

zi (p)− z0 (p) =

np∑

j=1

di,j

(
πj −

βi,j

di,j

)2

+ γi −

np∑

j=1

β2
i,j

di,j
.

(31)

Let [π] = Ui [p]. A contractor for [πj ] is obtained from
(31) as follows

[
π′
j

]
= [πj ] ∩

{
±

(
1

di,j

((
([zi] ([p])− [z0] ([p])) ∩ [0,∞[

)

−

np∑

k=1
k 6=j

di,k
(
[πk]−

βi,k

di,k

)2
− γj +

np∑

k=1

β2
i,k

di,k

)) 1
2

+
βi,j

di,j

}
.

(32)

From (32), the contractor Czi−z0,[0,∞[ for [p] is such that

[p′
i] = Czi−z0,[0,∞[ ([p]) = [p] ∩

(
UT

i [π′]
)
. (33)

When n is large enough and provided that the ϕt’s have
been well designed, it is very unlikely that A2

i − A2
0 is

rank deficient. Should this occur, (31) and (32) would
have to be rewritten distinguishing the zero and nonzero
di,j ’s.
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Proposition 1 Provided that di,j 6= 0 for j = 1, . . . , np,
for all [p′

i], i = 1, . . . ,m − 1, built using (32) and (33),
[p′

i] ⊂ [p] and

[p′
i] ∩ (zi − z0)

−1
([0,∞[) = [p] ∩ (zi − z0)

−1
([0,∞[) .

(34)

Proof [p′
i] ⊂ [p] is true by construction. To prove (34),

it remains to prove that [p]∩(zi − z0)
−1

([0,∞[) ⊂ [p′
i]∩

(zi − z0)
−1

([0,∞[). Considerp0 ∈ [p]∩(zi − z0)
−1

([0,∞[)
and π0 = Uip

0 ∈ [π]. To prove that p0 ∈ [p′
i] ∩

(zi − z0)
−1

([0,∞[), it suffices to prove that π0 ∈ [π′].
By definition of p0, one has

np∑

j=1

di,j

(
π0
j −

βi,j

di,j

)2

+ γi −

np∑

j=1

β2
i,j

di,j
= zi

(
p0
)
− z0

(
p0
)

> 0. (35)

Since π0 ∈ [π], after some manipulations of (35), one
gets for j = 1, . . . , np

π0
j ∈ [πj ] ∩

{
±

(
1

di,j

((
([zi] ([p])− [z0] ([p])) ∩ [0,∞[

)

−

np∑

k=1
k 6=j

di,k

(
[πk]−

βi,k

di,k

)2
− γj +

np∑

k=1

β2
i,k

di,k

)) 1
2

+
βi,j

di,j

}

(36)

∈
[
π′
j

]
,

which completes the proof. ⋄

Applying the contractors Czi−z0,[0,∞[, i = 1, . . . ,m, to
[p], as in Section 3.1.1, one obtains a list of m possibly
contracted boxesL =

{
Cz1−z0,[0,∞[ ([p]) , . . . , Czm−z0,[0,∞[ ([p])

}
.

3.1.3 Building a q-relaxed intersection

During the second step, the contractor builds a box [p′]
enclosing the q-relaxed intersection P [5,6] of the boxes
in L = {[p′

1] , . . . , [p
′
m]}, i.e., the union of all intersec-

tions of at least q boxes in L

P =

q⋂

j∈{1,...,m−1}

[
p′
j

]
=

⋃

J⊂[1,...,m−1]
card(J)>q

⋂

j∈J

[
p′
j

]
, (37)

with
P ⊂ [p′] ⊂ [p] . (38)

Proposition 2 For any box [p′] satisfying (38),

Ψq ∩ [p′] = Ψq ∩ [p] ,

with Ψq as defined in (14).

1 [p] = ∅;

2 Reindex the boxes [pi] in such a way that

p
1
6 p

2
6 · · · 6 p

n
;

3 For i = q to n

4 if
∑n

j=1

(
p
i
∈ [pj ]

)
> q

5 p = p
i
; break;

6 Reindex the boxes [pi] in such a way that

p1 > p2 > · · · > pn

7 For i = q to n

8 if
∑n

j=1 (pi ∈ [pj ]) > q

9 p = pi; break;

Algorithm 1. [p] = q-relaxed intersection ([p1] , . . . , [pn])

Proof Assume that there exists p0 ∈ [p] such that p0 ∈
Ψq∩[p] but p0 /∈ Ψq∩[p

′]. Since p0 ∈ Ψq∩[p], p0 ∈ Ψq.
According to (14),

∑m
i=1 τi (p0) > q. There are thus at

least q functions τi such that τi (p0) > 1. Assume, with-
out loss of generality, that τ1 (p0) > 1, . . . , τq (p0) > 1.
Since τi (p0) > 1, i = 1, . . . , q, by definition of Cfi,[0,∞[,
one has p0 ∈ [p′

i], i = 1, . . . , q and p0 ∈
⋂

i=1,...,q [p
′
i]. By

definition of P and [p′], p0 ∈
⋂

i=1,...,q [p
′
i] ⊂ P ⊂ [p′],

which contradicts the initial assumption. ⋄

3.1.4 Evaluating the q-relaxed intersection

Algorithm 1 formalizes a computation carried out on an
example in [6]. It aims at building an outer approximat-
ing interval of the q-relaxed intersection of m scalar in-
tervals.

Consider a listL = {[p1] , . . . , [pm]} ofm scalar intervals.
Algorithm 1 builds the smallest interval containing the
union of all intersections of q intervals with a complexity
O (m logm). This is the smallest interval containing P
as defined by (37) in the scalar case. At Steps 4 and 8 of
Algorithm 1, (p ∈ [pj ]) = 1 if p ∈ [pj ] and (p ∈ [pj ]) = 0
otherwise. The extension to boxes is obtained by apply-
ing Algorithm 1 componentwise.

4 Examples

A model the output of which is nonlinear in its param-
eters is considered first with LSCR. Then, a FIR model
with a large number of parameters is considered with
SPS.

All computations were carried out with Intlab [10], the
interval-analysis toolbox for Matlab, on an Intel Core
i7 at 3.7 GHz with 8 GB RAM. The computations re-
quired by SIVIA and the q-relaxed intersection, which
form the major part of the computational burden, could
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Fig. 1. Two-compartment model

be speeded up considerably with a C++ implementa-
tion.

4.1 Model nonlinear in its parameters

Consider the two-compartment model described by Fig-
ure 1. Only the content of the second compartment is
observed. The model parameters to be estimated are

p = (k01, k12, k21)
T
. The data are generated by this

model for some true value p∗ = (1, 0.25, 0.5)
T
of its pa-

rameter vector. They satisfy

yt = α (p∗) (exp (λ1 (p
∗) t)− exp (λ2 (p

∗) t)) + wt,

where

α (p) = k21/

√
(k01 − k12 + k21)

2
+ 4k12k21, (39)

λ1,2 (p) = −
1

2
((k01 + k12 + k21)

±
(
(k01 − k12 + k21)

2
+ 4k12k21

)−1/2
)

(40)

and the wt’s are realizations of i.i.d. N
(
0, σ2

)
variables,

for t = 0, T, . . . , (n− 1)T . The variance of the mea-
surement noise is σ2 = 10−4. The sampling period is
T = 0.2 s, and n = 64. To facilitate illustration, only
k01 et k12 are estimated. The value k∗21 of k21 is assumed
known. The prediction errors are εt (p) = yt − ymt (p) ,
with

ymt (p) = α (p) (exp (λ1 (p) t)− exp (λ2 (p) t)) ,

for t = 0, T, . . . , (n− 1)T .

Here, the set Θε
r,q has been characterized using LSCR

with r = 1 and q = 3, which corresponds to a 90 %
confidence region, see Figure 2. The initial search set
in parameter space is P = [0, 5] × [0, 5] × [0.5, 0.5]. The
top left part of Figure 2 represents the result obtained
in 284s by gridding as in [1] with a grid step-size ε =
0.0025. The top right part of Figure 2 has been obtained
by SIVIA with ε = 0.0025 in 175s. The top right part
of Figure 2 proves that the confidence region consists
of two disconnected subsets, a consequence of the lack
of global identifiability of the model (the values of k01
and k12 may be exchanged without changing the model
output). Figure 2 (bottom part) zooms on one of the
two confidence subsets, which turns out to contain the
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Fig. 2. Gridding (left) and paving (right) of search space
obtained using LSCR in the two-compartment model case
for the characterization of the confidence region Θε

r,q; the
two bottom subfigures are obtained by zooming in on one of
the connected components of Θε

r,q

actual value of the unknown parameters, although this
is not guaranteed, of course.

Table 1 shows the evolution of computing time for the
gridding approach and SIVIA. The increase is quadratic
with 1/ε for gridding. It is slower with SIVIA, since
only undetermined boxes are further bisected when ε de-
creases. An additional advantage of SIVIA is that the
results it provides are guaranteed.

ε 0.1 0.025 0.01 0.0025 0.001

Gridding (s) 0.26 2.9 18 284 1750

SIVIA (s) 15 57 93 175 400

Table 1
Computing times for various values of ε in the example of
Section 4.1

4.2 FIR model

Consider now the system

yt = ymt (p∗) + wt, (41)

with the FIR model

ymt (p) =

na−1∑

i=0

aiut−i, (42)
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where p = (a0, . . . , ana−1)
T
and ut = 0 for t 6 0. For

t = 1, . . . , n, the wt’s are i.i.d. noise samples. In linear
regression form, (41) becomes

yt = ϕT
t p

∗ + wt (43)

withϕT
t = (ut, . . . , ut−na+1) andp

∗ =
(
a∗0, . . . , a

∗
na−1

)T
.
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Fig. 3. Width of the largest component of the outer box re-
sulting from a single application of the contractor of Sec-
tion 3.1.2 as a function of the SNR and number of data
points.

To evaluate the performance of the proposed technique
for a large number of parameters, FIR models (42) with
na = 20 random parameters in [−2, 2]

na are generated.
Then, n = 512, 1024, 2048, 4096, and 8192 noise-free
data points are generated applying a random i.i.d. se-
quence ut of ±1, which is the D-optimal input under the
constraint that the input has to remain in [−1, 1] [11].
White Laplacian noise is then added to these data. The
standard deviation of the noise is set up to get SNRs
from 5 dB to 40 dB.

Our aim is to characterize a 95% confidence region with
SPS. A possible choice is m = 255 and q = 13. The
initial search box in parameter space is taken as P =[
−104, 104

]20
. Getting accurate inner and outer approx-

imations using union of non-overlapping boxes is hope-
less with na = 20 parameters, because of the curse of
dimensionality. Our aim is instead to provide a guaran-
teed outer-approximation of the confidence region 1 . For
that purpose, the contractor of Section 3.1.2 is applied
once to P (iterations are useless). A box estimate is ob-
tained in 5s in average, whatever the value of n. This is
because the computational complexity of the contractor
of Section 3.1.2 is mainly determined by m and na. Fig-
ures 3 and 4 represent the width of the largest compo-
nent of the resulting outer box as a function of the SNR
and of the number of data points.

1 The computed least-square estimate belongs to the confi-
dence region, as showed in [2]. It thus forms a (point) inner
approximation.
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Fig. 4. Width of the largest component of the outer box re-
sulting from a single application of the contractor of Sec-
tion 3.1.2 as a function of the number of data points and of
the SNR.

The width of the box decreases linearly (in the log do-
main) when the SNR or the log of the number of data
points increases.

5 Conclusions and perspectives

Interval analysis provides tools to evaluate guaranteed
inner and outer-approximations of non-asymptotic con-
fidence regions defined by LSCR and SPS. This has been
demonstrated on a model the output of which is nonlin-
ear in its parameters.

Accurate inclusion functions are particularly difficult to
obtain for the functions involved in LSCR or SPS, due
to the many occurrences of the parameters involved in
the evaluation of (3) for LSCR and of (9) and (10) for
SPS. Symbolic manipulations of the expressions involved
to reduce the number of occurrences of the parameters
may be particularly useful to improve the efficiency of
SIVIA and to design more efficient contractors than the
one considered in Section 3.1.1. This is what was done in
Section 3.1.2 for the linear case for SPS. It then becomes
possible to get guaranteed outer-approximations of con-
fidence regions defined by SPS for FIR models with a
large number of parameters.
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