An efficient interpolation for calculation of the response of composite layered material and its implementation in MUSIC imaging
Giacomo Rodeghiero, Yu Zhong, Dominique Lesselier, Marc Lambert, Xudong Chen

To cite this version:

HAL Id: hal-00925728
https://hal-supelec.archives-ouvertes.fr/hal-00925728
Submitted on 25 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Main institutions involved
- Département de Recherche en Électromagnétisme, Laboratoire des Signaux et Systèmes UMR8506
- Department of Electrical and Computer Engineering, National University of Singapore

Main financial support
- DIGITEO : PhD Scholarship jointly involving L2S and CEA-LIST (Département Imagine et Simulation pour le Comtrole)
- Univ Paris-Sud : invited assistant professor

To build
- Accurate computational models of complex anisotropic multi-layer composite panels
- Robust, fast, end-user's friendly imaging procedures

Electromagnetic modeling and preliminary numerical results

Undamaged structure
- Each layer: homogeneous anisotropic (different e.m. properties from layer to layer)
- Uniaxial dielectric (glass-based) or conductive (graphite-based)
- Effective media large-scale hypothesis
- Diagonal tensor in eigenframes along and orthogonal to fibers' axes
- Dyadic Green function in need as well as response to known distributed electric source anywhere in the structure

Damaged structure
- E.M. parameters differ from background stratified panel within layers or at interfaces
- 3-D volumetric defects (voids, fluid-filled cavities, localized damaged zones, etc.), or delaminations (thin, air-type slabs)
- Method of Moments upon vector contrast-source integral formulations, or change of dyads via supplementary reflection/transmission

Constructing the spectral and spatial response of the laminate forward modeling

New recurrence relations based on the propagator matrix method [8]
- To efficiently calculate the spectral response of the laminate
- Capable of stably dealing with distributed source along z
- Much more efficient compared to the traditional Green's function method
- To numerically solve the state equation

\[
\begin{align*}
\frac{\partial}{\partial z} (\tilde{z} + \tilde{A} \tilde{z} + \tilde{f}(\tilde{z})) = c(\tilde{z}) \text{ containing the tangential components of the fields and } \tilde{f}(\tilde{z}) \text{ being the source term}
\end{align*}
\]

Multiple Signal Classification (MUSIC) imaging with anisotropic layered media

Interpolation and integration using the Padua points
- Alternative representation as self intersections and boundary contacts of the generating curve
- Goal is to compute the I-FT of fast oscillating spectrum in the k_x – k_y plane

\[
G(x, y) = \frac{1}{\pi^2} \int \int G(x_k, y_k) \delta(x_k(x) - x) \delta(y_k(y) - y) \, dx_k \, dy_k
\]

Dealing with fast oscillating integrals
- Interpolation of the non-oscillating part at the Padua points with Chebyshev's polynomial interpolant

\[
\epsilon_{0} \tilde{G}_{B}(\tilde{k}) = \sum_{i=0}^{N} \tilde{k}_{i} \tilde{T}_{i}(\tilde{k}) \tilde{T}_{i}(\tilde{k}) - 2 \tilde{k}_{0} \tilde{T}_{1}(\tilde{k}) \tilde{T}_{0}(\tilde{k})
\]

with weights \(\epsilon_{0} \tilde{k}_{i} \) computed using [4]
- Fourier transform of Chebyshev polynomials given by

\[
\tilde{T}_{i}(\tilde{k}) \exp(-\lambda \tilde{k}) \, d\tilde{k}
\]

are managed using [6] among other good options.

MUSIC images of anisotropic layered media affected by two defects

- A cross type antenna array with 5 antennas on each arm.
- Each antenna as transceivers with x and y polarizations.
- Two small inclusions of dimension of 0.1 \(\times \) 0.1 \(\times \) 0.1 m.

\[
\begin{align*}
\tilde{z}_{x} = \tilde{z}_{y} = \tilde{z}_{z} = (4.5 \times 0.2 \times 0.05 \times 0.05), \tilde{r}_{x} = 45^\circ \\
\tilde{z}_{x} = \tilde{z}_{y} = \tilde{z}_{z} = (2 \times 0.3 \times 0.1 \times 0.1), \tilde{r}_{z} = 60^\circ \\
\tilde{z}_{x} = \tilde{z}_{y} = \tilde{z}_{z} = (4.5 \times 0.2 \times 0.05 \times 0.05), \tilde{h}_{x} = 0.5 \tilde{z}_{x} \\
\tilde{z}_{x} = \tilde{z}_{y} = \tilde{z}_{z} = (0.2 \times 0.1 \times 0.05), \tilde{h}_{z} = 0.2 \tilde{z}_{z} \\
\end{align*}
\]

Conclusions & perspectives
- Numerical integration method based on Padua points is proposed to avoid directly interpolating on the fast oscillating function
- The approach is validated by comparison with configurations found in the literature