An efficient interpolation for calculation of the response of composite layered material and its implementation in MUSIC imaging

Giacomo Rodeghiero, Yu Zhong, Dominique Lesselier, Marc Lambert, Xudong Chen

To cite this version:

HAL Id: hal-00925728
https://hal-supelec.archives-ouvertes.fr/hal-00925728
Submitted on 25 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Electromagnetic modeling and preliminary numerical results

New recurrence relations based on the propagator matrix method [8]

- To efficiently calculate the spectral response of the laminate
- Capable of stably dealing with distributed source along z
- More efficient compared to the traditional Green’s function method
- To numerically solve the state equation

\[\frac{d}{dz} \Phi(z) = \tilde{X}(z) \Phi(z) \] with \(\tilde{X}(z) \) containing the tangential components of the fields and \(\Phi(z) \) being the source term

\[\frac{d^2}{dz^2} \Phi(x, y) = \Delta(\Phi(x, y)) \]

- Goal is to compute the 1-F of fast oscillating spectrum in the \(k_x-k_y \) plane

\[G(x, y) = \frac{1}{2\pi} \int G(k_x, k_y) \Delta(\Phi(x, y)) \, dk_x \, dk_y \] (1)

- Interpolation of the non-oscillating part at the Padua points with Chebyshev’s polynomial interpolant

\[C_n G_n(k_x, k_y) = \sum_{i=0}^{n} \phi_i(x, y) T_n(k_x) \] with weights \(\phi_i(x, y) \) computed using [4]

- Fourier transform of Chebyshev polynomials given by

\[\tilde{F}(k_x) \exp(-ik_x x) \, dk_x \] are managed using [6] among other good options.

MUSIC images of anisotropic layered media affected by two defects

- Standard MUSIC imaging method [1]

\[\Phi(\omega) = \sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{G}(\omega) \tilde{G}^*(\omega) \]

- Enhanced MUSIC imaging method [5]

\[\Phi(\omega) = \sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{G}(\omega) \tilde{G}^*(\omega) \]

with \(\omega = \arg \max \{ \tilde{G}(\omega) \tilde{G}^*(\omega) \} \)

Conclusions & perspectives

- Green’s function constructed by the proposed method is applied in MUSIC imaging.
- Preliminary numerical results show the efficiency of the proposed method in a fully complex anisotropic configuration