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Abstract

The use of multiple antennas at base stations is a key component
in the design of cellular communication systems that can meet
high-capacity demands in the downlink. Under ideal conditions, the
gain of employing multiple antennas is well-recognized: the data
throughput increases linearly with the number of transmit antennas
if the spatial dimension is utilized to serve many users in parallel.
The practical performance of multi-cell systems is, however, limited
by a variety of nonidealities, such as insu�cient channel knowledge,
high computational complexity, heterogeneous user conditions, limited
backhaul capacity, transceiver impairments, and the constrained level
of coordination between base stations.



This tutorial presents a general framework for modeling di�erent
multi-cell scenarios, including clustered joint transmission,coordinated
beamforming, interference channels, cognitive radio, and spectrum
sharing between operators. The framework enables joint analysis and
insights that are both scenario independent and dependent.

The performance of multi-cell systems depends on the resource
allocation; that is, how the time, power, frequency, and spatial
resources are divided among users. A comprehensive characterization
of resource allocation problem categories is provided, along with the
signal processing algorithms that solve them. The inherent di�cult ies
are revealed: (a) the overwhelming spatial degrees-of-freedom created
by the multitude of transmit antennas; and (b) the fundamental trade-
o� between maximizing aggregate system throughput and maintaining
user fairness. The tutorial provides a pragmatic foundation for resource
allocation where the system utility metric can be selected to achieve
practical feasibility. The structure of optimal resource allocation is
also derived, in terms of beamforming parameterizations and optimal
operating points.

This tutorial provides a solid ground and understanding for opti-
mization of practical multi-cell systems, including the impact of t he
nonidealities mentioned above. The Matlab code is available online for
some of the examples and algorithms in this tutorial.



1
Introduction

This section describes a general framework for modeling di�erent types
of multi-cell systems and measuring their performance „ both in ter ms
of system utility and individual user performance. The framework is
based on the concept of dynamic cooperation clusters, which enables
uni“ed analysis of everything from interference channels and cognitive
radio to cellular networks with global joint transmission. The concept of
resource allocation is de“ned as allocating transmit power among users
and spatial directions, while satisfying a set of power constraints that
have physical, regulatory, and economic implications. A major compli-
cation in resource allocation is the inter-user interference that arises
and limits the performance when multiple users are served in parallel.
Resource allocation is particularly complex when multiple antennas
are employed at each base station. However, the throughput, user sat-
isfaction, and revenue of multi-cell systems can be greatly improved if
we understand the nature of multi-cell resource allocation and how to
exploit the spatial domain to obtain high spectral e�ciencies.

Mathematically, resource allocation corresponds to the selection of
a signal correlation matrix for each user. This enables computation
of the corresponding signal-to-interference-and-noise ratio (SINR)of
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each user. For a given resource allocation, this section describes di�er-
ent ways of measuring the performance experienced by each user and
the inherent con”ict between maximizing the performance of di�erent
users. The performance region and channel gain regions are de“ned
to illustrate this con”ict. These regions provide a bridge between user
performance and system utility. Resource allocation is then naturally
formulated as a multi-objective optimization problem and the bound-
ary of the performance region represents all e�cient solutions.

This section formulates the general optimization problem, discusses
the di�erent solution strategies taken in later sections, and derives some
basic properties of the optimal solution and the performance region.
A detailed outline of this tutorial is given at the end of this section.
Mathematical proofs are provided throughout the tutorial to facilitate
a thorough understanding of multi-cell resource allocation.

1.1 Introduction to Multi-Antenna Communications

The purpose of communication is to transfer data between devices
through a physical medium called the channel. This tutorial focuses
on wireless communications, where the data is sent as electromag-
netic radio waves propagating through the environment between the
devices (e.g., air, building, trees, etc.). The wireless channel distorts
the emitted signal, adds interference from other radio signals emitted
in the same frequency band, and adds thermal background noise. As
the radio frequency spectrum is a global resource used for many things
(e.g., cellular/computer networks, radio/television broadcasting, satel-
lite services, and military applications) it is very crowded and spec-
trum licenses are very expensive, at least in frequency bands suitable
for long-range applications. Therefore, wireless communication systems
should be designed to use their assigned frequency resources as e�-
ciently as possible, for example, in terms of achieving highspectral
e�ciency (bits/s/Hz) for the system as a whole. This becomes partic-
ularly important as cellular networks are transitioning from low-rate
voice/messaging services to high-rate low-latency data services. The
overall e�ciency and user satisfaction can be improved by dynamic
allocation and management of the available resources, and service
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providers can even share spectrum to further improve their joint
spectral e�ciency.

The spectral e�ciency of a single link (from one transmitter to
one receiver) is fundamentally limited by the available transmit power
[236], but the spectral e�ciency can potentially be improved by allow -
ing many devices to communicate in parallel and thereby contribute to
the total spectral e�ciency. This approach will however create inte r-
user interference that could degrade the performance if not properly
controlled. As the power of electromagnetic radiowavesattenuates with
the propagation distance, the traditional way of handling interference
is to only allow simultaneous use of the same resource (e.g., frequency
band) by spatially well-separated devices. As the radiowaves from a
single transmit antenna follow a “xed radiation pattern, this calls for
division of the landscape into cells and cell sectors. By applying “xed
frequency reuse patterns such that adjacent sectors are not utilizing
the same resources, interference can be greatly avoided. This near-
orthogonal approach to resource allocation is, however, known to be
ine�cient compared to letting transmitted signals interfere in a con-
trolled way [227].

In contrast to classical resource allocation with single-antenna
transmitters [197, 267, 316], modern multi-antenna techniques enable
resource allocation with precise spatial separation of users. By steer-
ing the data signals toward intended users, it is possible to increase
the received signal power (called an array gain) and at the same time
limit the interference caused to other non-intended users. Thesteer-
ing is tightly coupled with the concept of beamforming in classic array
signal processing; that is, transmitting a signal from multiple antennas
using di�erent relative amplitudes and phases such that the compo-
nents add up constructively in desired directions and destructively in
undesired directions. Herein, steering basically means to form beams in
the directions of users with line-of-sight propagation and to make mul-
tipath components add up coherently in the geographical area around
non-line-of-sight users. The beamforming resolution depends on the
propagation environment and typically improves with the number of
transmit antennas [220]. The ability to steer signals toward intended
users ideally enables global utilization of all spectral resources, thus
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Fig. 1.1 Illustration of the di�erence between single-anten na and multi-antenna transmis-
sion. With a single antenna, the signal propagates according t o a “xed antenna pattern
(e.g., equally strong in all directions) and can create seve re interference in directions where
the intended user is not located. For example, interference i s caused to User 2 when User
1 is served. With multiple antennas, the signal can be steered toward the intended user
which enables simultaneous transmission to multiple spatia lly separated users with con-
trolled inter-user interference.

removing the need for cell sectoring and “xed frequency reuse patterns;
see Figure 1.1. This translates into a much higher spectral e�ciencybut
also more complex implementation constraints „ as described later in
this section.

The seminal works of [74, 187, 261] provide a mathematical moti-
vation behind multi-antenna communications; the spectral e�cienc y
increases linearly with the number of antennas (if the receiver knows
the channel and has at least as many antennas as the transmitter).
The initial works considered point-to-point communication between
two multi-antenna devices „ a scenario that is fairly well-under stood
today [89, 165, 196, 269]. Encouraging results for thesingle-cell down-
link where one multi-antenna device transmits to multiple user devices
(also known as the broadcast channel) were initially derived in [46, 283].
The information-theoretic capacity region is now fully characterized,
even under general conditions [295]. The optimal spectral e�ciency is
achieved bynonlinear interference pre-cancelation techniques, such as
dirty paper coding [56]. The single-cell scenario is more challenging than
point-to-point since the transmitter needs to know the channel direc-
tions of the intended users to perform nonlinear interference precance-
lation or any sensible linear transmission [84]. Thus, su�cient overhead
signaling needs to be allocated for estimation and feedback of channel
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information [15, 44, 113]. On the other hand, high spectral e�ciency can
be achieved in single-cell scenarios while having low-cost single-antenna
user devices and non-ideal channel conditions (e.g., high antenna
correlation, keyhole-like propagation, and line-of-sight propagation)
[84] „ this is not possible in point-to-point communication.

The multi-cell downlink has attracted much attention, since the
system-wide spectral e�ciency can be further improved if the frequency
reuse patterns are replaced by cooperation between transmitters. Ide-
ally, this could make the whole network act as one large virtual cell that
utilizes all available resources [81]. Such a setup actually exploitsthe
existence of inter-cell interference, by allowing joint transmission from
multiple cells to each and every user. Unlike the single-cell scenario, the
optimal transmit strategy is unknown even for seemingly simple multi-
cell scenarios, such as theinterference channel where each transmitter
serves a single unique user while interference is coordinated across all
cells [69, 101, 157, 235]. Part of the explanation is that interference pre-
cancelation, which is optimal in the single-cell case, cannot be applied
between transmitters in the interference channel. Among the schemes
that are suboptimal in the capacity-sense,linear transmission is prac-
tically appealing due to its low complexity, asymptotic optimality ( in
certain cases), and robustness to channel uncertainty. The best linear
transmission scheme is generally di�cult to obtain [157, 168], even in
those single-cell scenarios where the capacity region is fully charac-
terized. Recent works have however derived strong parameterizations
[16, 180, 235, 325] and these will be described in Section 3.

This tutorial provides theoretical and conceptual insights on the
optimization of general multi-cell systems with linear transmission. To
this end, the tutorial “rst introduces a mathematical system model for
the single-cell downlink. This model serves as the foundation when mov-
ing to the multi-cell downlink, which has many conceptual similarities
but also important di�erences that should be properly addressed.

1.2 System Model: Single-Cell Downlink

Consider a single-cell scenario where a base station withN antennas
communicates with K r user devices, as illustrated in Figure 1.2. The
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Fig. 1.2 Illustration of the downlink multi-user system in S ection 1.2. A base station with
N antennas serves K r users.

kth user is denoted MSk (the abbreviation stands for mobile station)
and is assumed to have a single e�ective antenna1; the case with mul-
tiple antennas per user is considered in Section 4.6. This scenario can
be viewed as the superposition of several multiple-input single-output
(MISO) links, thus it is also known as the MISO broadcast channelor
multi-user MISO communication [46]. It is also frequently described
as multi-user MIMO (multiple-input multiple-output) (cf. [84] ), refer-
ring to that there are K r receive antennas in total, but we avoid this
terminology as it creates confusion.

The channel to MSk is assumed to be ”at-fading2 and represented
in the complex baseband by the dimensionless vectorhk � CN . The
complex-valued element [hk ]n describes the channel from thenth
transmit antenna; its magnitude represents the gain (or rather the
attenuation) of the channel, while its argument describes the phase-
shift created by the channel. We assume that the channel vector is
quasi-static; that is, constant for the duration of many transmission
symbols, known as thecoherence time. The collection of all channel
vectors { hk } K r

k=1 is known as thechannel state information (CSI) and
is assumed perfectly known at the base station. We also assume that
the transceiver hardware is ideal, without other impairments than can

1 This means that MS k is equipped with either a single antenna or M k > 1 antennas that
are combined into a single e�ective antenna (e.g., using rec eive combining or antenna
selection). There are several reasons for making this assum ptions: it enables noniterative
transmission design, put less hardware constraints on the use r devices, requires less channel
knowledge at the transmitter, and is close-to-optimal under realistic conditions [15, 28,
268].

2 Flat-fading means that the frequency response is ”at, which translates into a memoryless
channel where the current output signal only depends on the c urrent input signal.
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Fig. 1.3 Block diagram of the basic system model for downlink s ingle-cell communications.
K r single-antenna users are served by N antennas.

be included in the channel vector and background noise. These assump-
tions are idealistic, but simplify the conceptual presentation in this and
subsequent sections. It is generally impossible to “nd perfect models of
reality, or as famously noted in [34]: •Remember that all system models
are wrong.Ž Therefore, the goal is to formulate a model that enables
analysis and at the same time is accurate enough to provide valuable
insights. Relaxations to more realistic conditions and assumptions are
provided in Section 4.

Under these assumptions, the symbol-sampled complex-baseband
received signal at MSk is yk � C and is given by the linear input…output
model

yk = hH
k x + nk , (1.1)

where nk � C is the combined vector of additive noise and interference
from surrounding systems. It is modeled as circularly symmetriccom-
plex Gaussian distributed,nk � CN (0, � 2), where � 2 is the noise power.
This input…output model is illustrated in Figure 1.3. In a multi-carrier
system, for example, based on orthogonal frequency-division multiplex-
ing (OFDM), the input…output model (1.1) could describe one of the
subcarriers. For brevity, we concentrate on a single subcarrier in Sec-
tions 1…3, while the multi-carrier case is discussed in Section 4.5.

The transmitted signal x � CN contains data signals intended for
each of the users and is given by

x =
K r�

k=1

sk , (1.2)
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where sk � CN is the signal intended for MSk . These stochastic data
signals are modeled as zero-mean withsignal correlation matrices

Sk = E{ sksH
k } � CN × N . (1.3)

This transmission approach is known as linearmulti-stream beamform-
ing (rank( Sk ) is the number of streams) and the signal correlation
matrices are important design parameters which will be used to opti-
mize the performance/utility of the system.

De“nition 1.1. Each selection of the signal correlation matrices
S1, . . . ,SK r is called a transmit strategy. The average transmit power
allocated to MSk is tr( Sk ).

The only transmit strategies of interest are those that satisfy the
power constraints of the system, which are de“ned next.

1.2.1 Power Constraints

The power resources available for transmission need to be limited some-
how to model the inherent restrictions of practical systems. Theaverage
transmit power tr( Sk ) and noise power� 2 are normally measured in
milliwatt [mW], with dBm as the corresponding unit in decibels. W e
assume that there areL linear power constraints, which are de“ned as

K r�

k=1

tr( Q lk Sk ) � ql l = 1 , . . . ,L, (1.4)

where Q lk � CN × N are Hermitian positive semi-de“nite weighting
matrices and the limits ql � 0 for all l,k . If Q lk is normalized and dimen-
sionless, thenql is measured in mW and serves as an upper bound on the
allowed transmit power in the subspace spanned byQ lk . To ensure that
the power is constrained in all spatial directions, these matrices satisfy� L

l=1 Q lk � 0N for every k. These constraints are given in advance and
are based on, for example,

€ physical limitations
(e.g., to protect the dynamic range of power ampli“ers);
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€ regulatory constraints
(e.g., to limit the radiated power in certain directions);

€ interference constraints
(e.g., to control interference caused to certain users);

€ economic decisions
(e.g., to manage the long-term cost and revenue of running
a base station).

Two simple examples are a total power constraint (i.e.,L = 1 and
Q1k = I N for all k) and per-antenna constraints (i.e., L = N and Q lk

is only nonzero at thel th diagonal element). While these examples can
be viewed as two extremes, practical systems are typically limited in
both respects.

The matrices Q lk might be the same for all users, but can also
be used to de“ne subspaces where the transmit power should be kept
below a certain threshold when transmitting to a speci“c user (orsub-
set of users). The motivation is, for example, not to disturb neighbor-
ing systems and the corresponding constraints are called soft-shaping
[107, 230], because the shape of the transmission is only a�ected if the
power without the constraint would have exceeded the thresholdql .
For example, if the inter-user interference caused to MSk should not
exceedql , then we can setQ li = hkhH

k for all i �= k and Q lk = 0N . This
is relevant both to model so-called zero-forcing transmission (i.e., with
zero inter-user interference) and in the area of cognitive radio, where a
secondary system is allowed to use licensed spectrum if the interference
caused to the system of the licensee is limited.

The L linear sum power constraints introduced in (1.4) can be also
decomposed into per-user power constraints as

tr( Q lk Sk ) � qlk k = 1 , . . . ,K r , l = 1 , . . . ,L, (1.5)

for some limits qlk � 0 for all l,k . In order to ful“ll (1.4), the per-user
power limits need to satisfy the conditions

K r�

k=1

qlk � ql l = 1 , . . . ,L. (1.6)

This equivalent representation of theL linear sum power constraints is
useful to derive structural results on the optimal transmit strate gies.
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Selecting the limits qlk is part of the performance optimization and
basically corresponds to the per-user power allocation.

1.2.2 Resource Allocation

The signal correlation matrices are important parameters that shape
the transmission and ultimately decide what is received at the di�erent
users. Having de“ned the input…output model in (1.1) and the power
constraints in (1.4), we are ready to give a “rst brief de“nition of the
resource allocation problem considered in this tutorial.

De“nition 1.2. Selecting a transmit strategy S1, . . . ,SK r in compli-
ance with the power constraints is calledresource allocation.

The selection should be based on some criterion on user satisfac-
tion, which will be properly de“ned later in Section 1.4. Observe that
resource allocation implicitly includes selecting which usersto transmit
to, the spatial directivity of the signals to selected users, and thepower
allocation. In principle, tr( Sk ) describes the power allocated for trans-
mission to MSk , while the eigenvectors and eigenvalues ofSk describe
the spatial distribution of this power. The rank of Sk equals the number
of simultaneous data streams that are multiplexed to MSk . The gen-
eral case when multiple users are served simultaneously is calledspatial
division multiple access(SDMA) [217], while the special case when only
one user is allocated nonzero power at a time is known astime division
multiple access(TDMA). The N transmit antennas can be viewed as
having N spatial degrees-of-freedom in the resource allocation, which
can be utilized for sending a total ofN simultaneous data streams in a
controlled manner. The spectral e�ciency is not always maximized by
sending the maximum number of streams, since this might create much
inter-user interference and can be very sensitive to CSI uncertainty „
TDMA is the better choice in the absence of CSI [84].

SDMA is the main focus of this tutorial and we assume that there
is an in“nite queue of data to be sent to each user; thus, all users
are available for transmission and are not upper-limited on how high
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performance they can achieve. The data is delivered to the base station
through a backhaul network, which also will be used for base station
coordination when we extend the single-cell model into a multi-cell
model in Section 1.3.

Remark 1.1 (Basic Channel Modeling). The analysis in this
tutorial is applicable under any channel conditions, noise power, and
power constraints. Some intuition on typical system conditions (used
in numerical simulations) might however aid the understanding.

The channel vector is often modeled as complex Gaussian,hk �
CN(h̄k ,R k ), where the mean valueh̄k � CN describes the line-of-sight
propagation (if it exists) and the covariance matrix R k � CN × N char-
acterizes the varying nature of the channel. This model is calledRician
fading or Rayleigh fading(if h̄k = 0), since the magnitude of each chan-
nel element is Rice or Rayleigh distributed, respectively. Although sim-
ple, this model makes sense in rich multipath scenarios (e.g., based on
the Lindeberg Central limit theorem [309]) and has been validated by
measurements [54, 132, 288, 294, 306]. The spatial directivity is speci-
“ed by the o�-diagonal elements in R k and the exponential correlation
model in [162] provides a simple parametrization. The channel attenua-
tion depends strongly on the distance between the transmitter and the
receiver; this is modeled asŠ128.1 Š 37.6 log10(d) dB in 3GPP Long
Term Evolution (LTE) [1], where d is the separation in kilometers.
Accordingly, tr( R k )

N lies in the range ofŠ70 dB to Š140 dB in cellular
systems. Further reduction are introduced by signal penetration losses,
while antenna gains improve the conditions.

The noise power � 2 can be modeled asŠ174 + 10log10(b) + nf

dBm, where b is the bandwidth in Hertz and nf is the noise “gure
caused by hardware components. For example, the noise power isŠ127
dBm for a 15 kHz subcarrier with a 5 dB noise “gure. Furthermore,
the transmit power (per ”at-fading subcarrier) is typically in th e range
of 0…20 dBm. As the received signal power and the noise power are
both very small quantities, normalization is often bene“cial in numer-
ical computations.
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1.3 Extending Single-Cell Downlink to Multi-Cell Downlink

In traditional multi-cell systems, each user belongs to one cell at a time
and resource allocation is performed unilaterally by its base station.
This is enabled by having frequency reuse patterns such that cell sec-
tors utilizing the same resources cause negligible interference to each
other. The single-cell system model, de“ned in the previous section,
can therefore be applied directly onto each cell sector „ at least if
the negligible interference from distant cell sectors is seen as part of
the additive background noise. Accordingly, the base station can make
autonomous resource allocation decisions and be sure that no uncoor-
dinated interference appears within the cell.

A di�erent story emerges in multi-cell multi-antenna scenarios
where all base stations are simultaneously using the same frequency
resources (to maximize the system-wide spectral e�ciency). The coun-
terpart of SDMA in multi-cell systems have been given many names,
including co-processing [233], cooperative processing [321], network
MIMO [279],coordinated multi-point (CoMP) [202], andmulti-cell pro-
cessing [81]. It is based on the same idea of exploiting the spatial
dimensions for serving multiple users in parallel while controlling the
interference. Network MIMO is particularly important for users that
experience channel gains on the same order of magnitude from multiple
base stations (e.g., cell edge users). The initial works in [125, 233, 321]
assumed perfect co-processing at the base stations and modeled the
whole network as one large multi-user MISO system where the trans-
mit antennas happen to be distributed over a large area; all users were
served by joint transmission from all base stations and the multi-cell
characteristics were essentially reduced to just constraining the trans-
mit power per antenna array or antenna, instead of the total transmit
power (as traditionally assumed for single-cell systems). The optimal
spectral e�ciency under these ideal conditions can be obtained from
the single-cell literature, in particular [295]. Although mathematicall y
convenient, this approach leads to several implicit assumptions that
are hard to justify in practice. First, global CSI and data sharing is
required, which puts huge demands on the channel estimation, feed-
back links, and backhaul networks [122, 174, 175, 200, 247, 312, 313].
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Second, coherent joint transmission (including joint interference cance-
lation) requires very accurate synchronization3 between base stations
[18, 262, 318] and increases the delay spread [322], potentially turning
”at-fading channels into frequency-selective. Third, the complexity of
centralized resource allocation algorithms is infeasible in terms of com-
putations, delays, and scalability [21]. On the other hand, the early
works on the multi-cell downlink provide (unattainable) upper bou nds
on the practical multi-cell performance.

Various alternative models have been proposed to capture multi-
cell-speci“c characteristics. The CSI requirements were reduced in
[191, 114, 246] by using the so-called Wyner model from [299] where
interference only comes from immediate neighboring cells; see Exam-
ple 1.1 for details. This enables relatively simple analysis, but the
results can also be oversimpli“ed [300]. Another approach is to divide
base stations into static disjoint cooperation clusters as in Figure 1.4
[106, 174, 323]. Each cluster is basically operated as a single-cell system.

Fig. 1.4 Schematic illustration of static disjoint cooperat ion clusters.

3 Synchronization is very important to enable signal contribu tions from di�erent base sta-
tions to cancel out at nonintended users. Precise phase-synch ronization can potentially be
achieved and maintained by sending a common reference signal to the base stations from
a master oscillator [8, 177], using reference clocks that are phase-locked to the GPS [124],
or by estimating and feeding back the o�set at the users [318].
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If the clusters are su�ciently small (e.g., cell sectors connected to the
same eNodeB in an LTE system), this approach enables practical chan-
nel acquisition, coordination, and synchronization within each cluster.
Networks with static clusters unfortunately provide poor spectral e�-
ciency when the user distribution is heterogeneous [173] and su�er from
out-of-cluster interference [77]. The impact of these drawbacks canbe
reduced by having di�erent static disjoint cooperation clusters on di�er-
ent frequency subcarriers [176], by increasing the cluster size and serve
each user by a subset of its base stations [33], by having frequency reuse
patterns in the cluster edge areas [146], and by changing the disjoint
clusters over time [173, 199]. These approaches can however be viewed
as treating the symptoms rather than the actual problem, namely the
formation of clusters based on a base station-perspective. Steps toward
more dynamic and ”exible multi-cell coordination were taken in
[18, 77, 109, 128, 129, 263] by creating clusters from a user-centric per-
spective. This means that the set of base stations that serve or reduce
interference to a given user is based on the particular needs of this
user. Consequently, each base station has its own unique set of usersto
coordinate interference toward and serves a subset of these userswith
data. Each base station coordinates its resource allocation decisions
with exactly those base stations that a�ect the same users. This is very
di�erent from the disjointness mentioned above, because each base
station basically cooperates with all of its neighbors and forms di�erent
cooperation clusters when serving di�erent users. The geographical
location of a user has a large impact on the clustering [109], but the
desirable cooperation and coordination also change with time, for
example, based on user activity levels, mobility of users, and macro-
scopic conditions such as congestion in certain areas. This tutorial
considers dynamic cooperation clusters of this user-centric type and
the framework includes the scenarios described above as special cases.

A seemingly di�erent multi-cell setup arises in the area of cognitive
radio [90, 102, 230]. Frequency spectrum is traditionally licensed to
companies or agencies, which are given exclusive rights for utilization.
Therefore, the licensee can unilaterally manage the transmissions and
guarantee the service quality for its users. However, a major part
of the licensed spectrum is under-utilized today, thus providing the



1.3 Extending Single-Cell Downlink to Multi-Cell Downlink 129

opportunity for improvements in spectral e�ciency [55]. The cogniti ve
radio paradigm is based on having secondary systems that are allowed
to use the spectrum if they are not disrupting the primary system
(which owns the license). Three ways for the secondary system to
achieve this are: interweave (detect and transmit when primary sys-
tem is inactive), underlay (steer signals away from primary users
to avoid interference), and overlay (compensate for the interference
caused to primary users by participating in joint transmission of their
intended signals). These cognitive radio scenarios can be modeled
using the framework of this tutorial (see Section 4.8), and can nat-
urally be extended for spectrum sharing between operators on equal
terms.

1.3.1 Dynamic Cooperation Clusters

Next, we extend the downlink single-cell system model in Section 1.2
to a multi-cell scenario with K t base stations. The j th base station
is denoted BSj and is equipped with N j antennas. The antenna array
can have any structure and we assume thatN j is a “xed parameter.4

Observe that the total number of transmit antennas is still denoted
N =

� K t
j =1 N j . Based on the discussion in the previous section and

on [18], our general multi-cell system model will embrace the following
observations:

€ Each user is jointly served by a subset of all base stations;
€ Some base stations and users are very far apart, making it

impractical to estimate and separate the interference on these
channels from the background noise.

Based on these observations, we make the following de“nition.

4 The hardware design of antenna arrays has important implicat ions on channel properties
such as spatial correlation, mutual antenna coupling, and ap erture „ all of which are
a�ecting the spatial resolution of beamforming. Release 9 of the LTE standard supports
N j = 8 antennas [1], but current research investigates the pote ntial of having much larger
arrays (up to several hundred of antennas). We refer to [220] for a recent survey on the
challenges and opportunities of having unconventionally l arge numbers of antennas.
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De“nition 1.3. Dynamic cooperation clusters (DCC) means that:

€ BSj has channel estimates to users inCj � { 1, . . . ,K r } , while
interference generated to usersi �� C j is negligible and can be
treated as part of the Gaussian background noise;

€ BSj serves the users inD j � C j with data.

This coordination framework is characterized by the setsCj ,D j � j ,
which are illustrated in Figure 1.5. In this “gure, the inner set D j con-
tains the users that BSj might serve with data. The larger outer set Cj

contains all users that BSj should take into consideration and coordi-
nate interference toward. The mnemonic rule is thatD j describesdata
from BSj , while Cj describescoordination from BSj . The membership
of users in these sets changes dynamically during operation (e.g., based
on individual user locations and the user density in di�erent areas)and
it should be noted that each base station may cooperate with di�erent
subsets of base stations for each of its users; in other words, the users
can generally not be divided into disjoint groups served by disjoint
groups of base stations.

How to select Cj ,D j e�ciently is a very important and com-
plex problem [45]. On the one hand, joint transmission and interfer-
ence coordination provide extra degrees-of-freedom to separate users
spatially. This bene“t comes, on the other hand, at the cost of spending

Fig. 1.5 Schematic intersection of two cells. BS j serves users in the inner circle ( D j ), while
coordinating interference to users in the outer circle ( Cj ). The interference caused to users
outside both circles is negligible and included in the respe ctive noise terms.
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backhaul and overhead signaling on obtaining CSI, sharing data, and
achieving base station synchronization. Increased expenditure is only
well motivated if it leads to substantial improvements in spectral e�-
ciency; joint transmission is more costly (it requires data sharingand
tight synchronization) than interference coordination, thus we can gen-
erally expect D j to be a much smaller set thanCj . The clustering prob-
lem is discussed in Section 4.7, but for now we assume that the sets
Cj ,D j � j are given and known everywhere needed.

The reason for basing the tutorial on DCC is twofold. First, it
enables joint analysis of di�erent levels of multi-cell coordination (from
the Wyner model or cognitive radio to global joint transmission). Sec-
ond, it can resolve some of the issues that appear when the multi-cell
downlink is viewed as a single-user system with a large distributed
transmit antenna array and distributed power constraints. According
to De“nition 1.3, BS j only needs to know its own channel to users
that receive non-negligible interference from it „ a natural assumpt ion
since these are the users for which BSj can achieve reliable channel esti-
mates.5 In addition, only neighboring base stations need to be phase
synchronized6 and joint transmission only creates a small increase in
delay-spread (which is easy to handle in OFDM systems by increasing
the cyclic pre“x [322]).

1.3.2 Extended System Model: Multi-Cell Downlink

In the multi-cell scenario, the channel from all base stations to MSk
is denoted hk = [ hT

1k . . .hT
K t k ]T � CN , where h jk � CN j is the channel

from BSj . Based on the DCC in De“nition 1.3, only certain channel
elements ofhk will carry data and/or non-negligible interference. These
can be selected by the diagonal matricesD k � CN × N and Ck � CN × N ,

5 There are two main system categories: Frequency division dup lex (FDD) and Time divi-
sion duplex (TDD). The main di�erence is that each frequency s ubcarrier in FDD is used
for either downlink or uplink transmission, while each subcarrier in TDD switches between
downlink and uplink transmission. TDD seems particularly use ful for multi-cell coordina-
tion, because multiple base stations can exploit the same up link pilot signal to estimate
their respective channels (if channel reciprocity can be uti lized [96]). The CSI acquisition
is more demanding in FDD, since more resources are required for CSI feedback to the
additional base stations (and possibly some extra backhaul s ignaling).

6 Note that local phase synchronization does not imply global phase synchronization,
because small deviations between neighboring base station s are acceptable but can grow
into large deviation between distant base stations.
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which are de“ned as

D k =

�

�
�

D 1k 0
. . .

0 D K t k

�

�
� where D jk =

	
I N j , if k � D j ,

0N j , otherwise,
(1.7)

Ck =

�

�
�

C1k 0
. . .

0 C K t k

�

�
� where C jk =

	
I N j , if k � C j ,

0N j , otherwise.
(1.8)

Thus, hH
k D k is the channel that carries data to MSk and hH

k Ck is
the channel that carries non-negligible interference.7 It is necessary to
have both D k and Ck , to make sure that only the correct base stations
transmit to MS k when optimizing the resource allocation.

Extending the single-cell input…output model in (1.1), the symbol-
sampled complex-baseband received signal at MSk is

yk = hH
k Ck

K r�

i =1

D i si + nk (1.9)

and is illustrated in Figure 1.6.8 The additive term nk � CN (0, � 2
k ) is

now assumed to model both noise and weak uncoordinated interference
from all BSj with k �� C j (see De“nition 1.3). This assumption limits the
amount of CSI required to analyze the transmission and is reasonable
if only users that would receive signals that are stronger than the back-
ground noise are included inCj . This might be satis“ed if base stations
coordinate interference to all cell edge users of adjacent cells (similar to
the Wyner model [299]). The variance� 2

k is generally di�erent among
the users (representing how weak the uncoordinated interference is at

7 The antennas that transmit to a certain user can, for simplici ty, be thought of as being a
single transmitter, although the antennas might belong to d i�erent base stations. The real-
ity is however more complex, for example, due to base station -speci“c power constraints,
separate channel acquisition, and distributed resource all ocation; see Section 4.

8 This tutorial considers transmission using linear beamformi ng over a single subcarrier and
channel use. Higher spectral e�ciency can potentially be ac hieved using nonlinear interfer-
ence pre-subtraction at the base stations (e.g., dirty pape r coding [56, 46, 283, 295]) or by
extending the transmission over, for instance, a collectio n of channel realizations (e.g., inter-
ference alignment [41]). The truly optimal transmission sche me is unknown for general multi-
cell systems, thus the linear beamforming considered in this tutorial should be viewed as a
practically appealing transmission approach rather than th e overall optimal strategy.
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Fig. 1.6 Block diagram of the general system model for downlink multi-cell communications.
K r single-antenna users are served by N antennas.

a certain user) and is estimated and tracked using the received sig-
nals.9 It is worth pointing out that � 2

k is implicitly coupled with the
power constraints; if the system-wide power usage is increased, then the
uncoordinated interference will also increase. This relationship has no
particular impact on this tutorial since our power constraints are “xed ,
but is of paramount importance in any asymptotic analysis because
multi-cell systems are fundamentally interference-limited in the high-
SNR regime [164]. When nothing else is said, BSj is assumed to know
the channelsh jk and variances� 2

k perfectly to all usersk � C j . The case
with CSI uncertainty is considered in Section 4.

Just as in the single-cell scenario, the transmission is limited bythe
L power constraints in (1.4). An important di�erence is that the actual
transmitted signals are D ksk (and not sk ), thus each weighting matrix
Q lk should satisfy the additional condition that Q lk Š D H

k Q lk D k is
diagonal for all l,k (e.g., being zero). This technical assumption makes
sure that power cannot be allocated to unallowed subspaces for the
purpose of reducing the (measured) power in the subspaces used for
transmission „ which is only possible when Q lk is nondiagonal.

It is frequently assumed in multi-cell scenarios (but not necessary)
that each power constraint only a�ects the signals from one of the base
stations; for example, per-transmitter power constraints is represented
by having L = K t and the constraint a�ecting BS l is

Qper-BS
lk = D H

k diag


0N1+ ···+ N l Š 1 ,1N l ,0N l +1 + ···+ NK t

�
D k � l. (1.10)

9 It is implicitly assumed that nk is an ergodic process, which is not necessarily satis“ed
if unknown communication systems with fast adaptive resourc e allocation strategies are
creating the interference; a further discussion is availabl e in [302].
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The analysis in this tutorial is applicable to any feasible set of power
constraints, when nothing else is stated.

1.3.3 Examples of Multi-Cell Scenarios

We conclude this section by illustrating that the proposed DCC can
describe a variety of multi-cell scenarios. Di�erent examples aregiven
on the following pages.

Fig. 1.7 Illustration of the multi-cell scenario called the one-dimensional/linear Wyner
model. Users are jointly served by the closest base station and its two neighbors (in a cyclic
manner), and only experience interference from these three b ase stations.

Example 1.1(Wyner model). Based on an idea by A. Wyner [299],
it can be assumed that users only receive signals from their own base
station and the immediate neighboring base stations. This abstraction
is supposed to capture the locality of interference. The one-dimensional
(or linear) version of this model, where all devices are located on the
boundary of a large circle, is illustrated in Figure 1.7. It is usually
assumed that all users in thej th cell are jointly served by BSj Š 1, BSj ,
and BSj +1 . This model was originally proposed for uplink transmission,
but was used in [114, 191, 246] to analyze the ideal performance of joint
downlink transmission.

Assume that there are K t base stations and K r users. If
MSk is geographically closest to BSj , then we have D k = Ck =
diag(0N1+ ···+ N j Š 2 , I N j Š 1+ N j + N j +1 ,0N j +2 + ···+ NK t

) since MSk is served by
BSj Š 1, BSj , and BSj +1 and only experiences interference from these
base stations.
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Fig. 1.8 Illustration of the multi-cell scenario of coordinated beamforming . Users are served
by their own base station while interference is coordinated b y joint resource allocation
between all base stations.

Example 1.2 (Coordinated Beamforming). Coordinated beam-
forming means that each base station has a disjoint set of users to
serve with data, but selects transmit strategies jointly with all oth er
base stations to reduce inter-cell interference [59, 82, 139, 211]; see
Figure 1.8. There is an arbitrary number of users in each cell. The spe-
cial case with only one user per cell is called theinterference channel
[69, 101, 157, 235].

Assume that there are K t = 2 base stations and K r users.
Then, D k = diag( I N1 ,0N2 ) for all MS k served by BS1, while D k =
diag(0N1 , I N2 ) for all MS k served by BS2. In addition, C1 = C2 = I N

due to the global interference coordination.
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Fig. 1.9 Illustration of the global joint transmission scenario, where all cells and cell sectors
are connected and perform joint transmission to all users in the whole network.

Example 1.3 (Global Joint Transmission). Ideally, all base sta-
tions can serve and coordinate interference to all users [125, 233, 321].
Even if the cellular network was originally built with many cells and cell
sectors, this type of ideal/full CoMP turns the system into a single cell
with distributed antenna arrays; see Figure 1.9. The main di�erence
from the classic single-cell scenario might be the power constraints,
which typically are de“ned per-antenna or per-transmitter.

This type of global joint transmission and interference coordination
is represented by havingD k = Ck = I N for all users k.
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Fig. 1.10 Illustration of the scenario of underlay cognitive radio , where the secondary system
is allowed to use frequency resources licensed by the primary s ystem if the interference is
kept below a threshold.

Example 1.4 (Cognitive Radio). Underlay cognitive radio is a sce-
nario where a secondary system is allowed to use the licensed spectrum
of a primary system if it causes mild interference on the primary sys-
tem [90, 120, 230, 327]; see Figure 1.10. This scenario is particularly
relevant when the primary system is not fully utilizing its spectrum.

Assume that users with indices in Kprimary = { 1, . . . ,K primary }
belong to the primary systems, while users inKsecondary = { K primary +
1, . . . ,K r } belong to the secondary system and are served by joint
transmission. We then haveD k = 0N for k � K primary and D k = I N for
k � K secondary. We also haveCk = I N since interference is coordinated
toward all users. Finally, we have K primary soft-shaping constraints of
the form Qki = h i hH

i � k � K secondary to limit the interference toward
each primary user i � K primary . The correspondingqi de“nes the max-
imal interference power that can be caused to useri � K primary .
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Fig. 1.11 Illustration of the scenario of spectrum sharing between two operators covering
the same area, creating inter-operator interference.

Example 1.5 (Spectrum Sharing Between two Operators).
Spectrum sharing between operatorsis a scenario where two operators
agree to share some portion of their licensed frequency bands; see Fig-
ure 1.11 where Operator 1 has circular antenna arrays and serve laptops
while Operator 2 has triangular arrays and serve smartphones.

Suppose MSk is served by BS1 of Operator 1 with D k =
diag(I N1 ,0N2 , . . .). The signal received at MSk is a superposition of
the signals from BS1 of Operator 1 and BSA ,BSB ,BSC of Operator 2,
thus Ck = diag( I N���

BS 1

,0, . . . ,0, I NA , I NB , I NC� � �
BSA ,BSB ,BSC

,0, . . .). This model is easily

extended to the case in which inter-cell interference from thesame
operator is also considered (by modifying the matrixCk accordingly).
Another extension is to apply full joint transmission within one opera-
tor, which could be modeled byD k = diag( I N1 ,0N2 , I N3 ,0N4 , . . .).
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1.4 Multi-Cell Performance Measures and
Resource Allocation

In this section, we de“ne a general way of measuring the performance
in multi-cell systems. It is instructive to separate the performance into
two parts: (1) the performance that each user experiences; and (2) the
system utility which is a collection of simultaneously achievable user
performances. These two parts are described and analyzed in the fol-
lowing subsections.

1.4.1 User Performance

To enable low-complexity and energy-e�cient receivers, we assume sin-
gle user detection meaning that a user is not attempting to decode
and subtract interfering signals while decoding its own signals. This
assumption is limiting in terms of spectral e�ciency, except in t he low-
interference regime [4, 234], but requires less complex signal processing
algorithms for reception. In principle, it also places the responsibility for
interference control at the transmitter-side, where the computational
resources are available. The corresponding SINR for MSk is

SINRk (S1, . . . ,SK r ) =
hH

k CkD kSkD H
k CH

k hk

� 2
k + hH

k Ck (
�

i �= k
D i Si D H

i )CH
k hk

=
hH

k D kSkD H
k hk

� 2
k + hH

k Ck (
�

i �I k

D i Si D H
i )CH

k hk
, (1.11)

where the second equality follows fromCkD k = D k and CkD i �= 0
only for users i in

I k =
�

{ j �J : k�C j }

D j \ { k} . (1.12)

This is the set of co-users being served by the same base stations that
coordinate interference toward MSk . Observe that the SINR is a dimen-
sionless quantity, thus it does not matter if the transmit and noise
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powers are measured in milliwatt or watt. For brevity, we frequently
write SINR k instead of SINRk (S1, . . . ,SK r ) in this tutorial.

The signal-to-noise ratio (SNR) can be de“ned accordingly by
removing the interference term in (1.11). We will however mostlyuse
this term as an indication of the ideal signaling conditions to a given

user:qj
� h H

k C k D k � 2
2

� 2
k

, whereqj is the constraint that ultimately limits the

transmit power. We show in Section 3.4 that the optimal transmission
structure depends strongly on the SNR „ roughly speaking, a low SNR
is below 0 dB and a high SNR is above 20 dB.

Note that other channel gain based SINR expressions are possible.
Consider the case in which MSk receives two statistically independent
data signals with correlation matrices S(1)

k and S(2)
k , for example, from

two di�erent base stations. Then, the resulting SINR expression useful
for information rate computation (after optimal receive processing with
successive interference cancelation) is given by

SINR2-signals
k (S1, . . . ,SK r ) =

hH
k CkD k (S(1)

k + S(2)
k )D H

k CH
k hk

� 2
k + hH

k Ck (
�

i �= k
D i Si D H

i )CH
k hk

. (1.13)

This expression is equivalent to (1.11) if all data signals are indepen-
dent.10 However, if S(2)

k represents a multi-cast signal meant for mul-
tiple users, then (1.13) cannot be written as (1.11). Multi-cast signals
can, for example, be used for overhead signaling to di�erent groups of
users [127, 245]. This type of multi-cast scenario is further described in
Section 4.

Each userk has its own quality measure represented by the user per-
formance function gk : R+ 	 R+ of the SINR. This function describes
the satisfaction of the user and generally depends on the service
currently used (e.g., its throughput and delay constraints11) and on
the priority given by the subscription pro“le.

10 This is can be seen by de“ning Sk = S(1)
k + S(2)

k .
11 Voice tra�c is an inelastic service as the user requires short delays and that a minimum

information rate is constantly available (while higher rat es unnecessary). On the contrary,
Internet tra�c is elastic as it can accept long delays and variations in the information
rate, while the satisfaction is strictly increasing with th e information rate.
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De“nition 1.4(User Performance Function). The performance of
MSk is measured by an arbitrary continuous, di�erentiable, and strictly
monotonically increasing12 function gk (SINRk ) of the SINR. This func-
tion satis“es gk (0) = 0, for notational convenience.

With this de“nition, it is preferable for MS k to have a large posi-
tive value on gk (SINRk ) because it corresponds to good performance.13

Ideally, the function gk (·) should be selected to quantify the perfor-
mance quality in a way comprehensible to the user and the system
provider. It is certainly di�cult to summarize and connect the us er
expectations and “nal service quality with a physical entity such as
the SINR. Nevertheless, De“nition 1.4 gives a reasonable structure
since improving the signal quality should always increase the perfor-
mance [196], or at least not degrade it [40].

Most of the analytical results in this tutorial only requires the stru c-
tural properties in De“nition 1.4 and are indi�erent to the actual choi ce
of user performance functions, therefore we will only explicitly specify
gk (·) when needed. Furthermore, the functions only need to satisfy the
continuity and monotonicity properties in De“nition 1.4 in the SINR
ranges supported by the power constraints in (1.4). The assumption
gk (0) = 0 is nonlimiting and always ful“lled after a simple variable
transformation. Here follow some common examples on performance
measures that satisfy our de“nition.

Example 1.6(Information Rate). The achievable information rate
(or mutual information) is gk (SINRk ) = log 2(1 + SINR k ) and describes
the number of bits that can be conveyed to userk (per channel use) with
an arbitrarily low probability of decoding error [57]. The underlying

12 A function gk : R � R is strictly monotonically increasing if it for any x,x � � R such that
x > x � also follows that f (x) > f (x � ).

13 If we would like to minimize some kind of error � gk (SINR k ) that is strictly monotonically
decreasing (e.g., mean square error or bit error rate), this ca n be reformulated into a
maximization of the multiplicative inverse as gk (SINR k ) = 1

�gk (SINR k ) Š 1
�gk (0) or maxi-

mization of the additive inverse as gk (SINR k ) = �gk (0) Š �gk (SINR k ). Observe that both
possibilities satisfy the condition of gk (0) = 0 in De“nition 1.4.
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assumption is an in“nite constellation sk � CN (0,Sk ), error-control
coding over very many channel uses, and ideal decoding [65].

Example 1.7 (Mean Square Error). The sum mean square error
(MSE) is MSEk = E{
 �sk Š sk 
 2

2} , where �sk is an estimate of sk

obtained using the optimal Wiener “lter [195] and noniterative recep-
tion. If M data streams are intended for transmission to userk
(i.e., rank(Sk ) � M ), then MSEk = M Š SINR k

1+SINR k
. This error measure

should be minimized, thus it is equivalent to maximizing gk (SINRk ) =
SINR k

1+SINR k
.

Example 1.8 (Bit Error Rate). The bit error rate (BER) for Gray
coded transmission of a 16-QAM constellation is

Pk,16-QAM =
3
8

erfc

� �
1
10

SINRk

�

+
1
4

erfc

� �
9
10

SINRk

�

Š
1
8

erfc

� �
5
2

SINRk

�

,

(1.14)

where erfc(x) = 2�
�

� �
x eŠ t2

dt is the complementary error function and
rank(Sk ) � 1 [73, 189]. This error measure should be minimized, thus
it is equivalent to maximizing gk (SINRk ) = 0 .5 Š Pk,16-QAM .

In terms of merits and demerits, the information rate has a simple
and marketable interpretation, but builds on idealized coding and sig-
nal processing assumptions. The MSE often gives simple expressions,
but it can be argued that it is only vaguely connected to the user-
experienced service quality. The BER is somewhat self-explanatory,
but typically has complicated expressions (as seen from Example 1.8)
and ignores channel coding which has a large impact on the e�ective
error rate.

The actual throughput in modern communication systems, such as
3GPP LTE systems, can often be predicted as� 1 log2(1 + SINR k /� 2),
for some parameters � 1 � [0.5,0.75] and � 2 � [1,2] that re”ect the
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practical bandwidth and SNR e�ciency, respectively [183]. This mod-
i“ed information rate expression is not perfect but is generally a good
choice, because the parameters� 1, � 2 can be “tted to the output of a
system-level simulator. However, there are certain practical situations
in which adaptive coding and modulation is not possible (e.g., systems
with very low-complexity devices) and BER/MSE measures are more
appropriate.

The analysis and optimization procedure in this tutorial is appli-
cable to any gk (·) satisfying De“nition 1.4; the particular choice will
not a�ect the approach to achieve optimal resource allocation, but will
certainly a�ect what is considered optimal.

Each transmitted data signal will in general a�ect all users and the
impact is characterized by the channel gain region.

De“nition 1.5 (Channel Gain Region). Consider the signal with
correlation matrix Sk . The received signal power at useri is given by
xki (Sk ) = hH

i C i D kSkD H
k CH

i h i . The channel gain regionof this signal
is de“ned as

� k =
�

(xk1(Sk ), . . . ,xkK r (Sk )) : Sk � 0N , tr( Q lk Sk ) � qlk � l
�

.
(1.15)

The set � k depends only on the signal correlation matrixSk and
on the per-user power constraints in (1.5). It describes the impactof
the choice ofSk on the received channel gain at all users.

Note that the de“nition of the channel gain region in De“nition 1.5
is di�erent from the de“nition in [180] because of the feasible transmit
strategies. Therefore, the next result which shows that �k is compact
and convex extends [180, Lemma 1].

De“nition 1.6. A set S � RK r is compact if it is closed and bounded.
S is convex if tr 1 + (1 Š t)r 2 � S wheneverr 1, r 2 � S and t � [0,1].

Lemma 1.1. The channel gain region � k is compact and convex.



144 Introduction

Proof. De“ne the vector with achievable channel gains asxk (Sk ) =
[xk1(Sk ) . . . xkK r (Sk )]T . The set of feasible signal correlation matrices
is Sk =

�
Sk :Sk � 0N , tr( Q lk Sk ) � qlk � l

�
and is compact and closed.

Since � k is achieved by a continuous mapping from the closed setSk , we
can invoke [219, Theorem 4.14] to conclude that also �k is a closed set.

It remains to show that � k is convex: For any two points xk (S(1) ) �
� k and xk (S(2) ) � � k , we have to show thatxk (Sz(t)) � � k for Sz(t) =
tS(1) + (1 Š t)S(2) and t � [0,1]. It holds as

xki (Sz(t)) = hH
i C i D kSz(t)D H

k CH
i h i

= hH
i C i D k

�
tS(1) + (1 Š t)S(2)

�
D H

k CH
i h i

= tx ki (S(1) ) + (1 Š t)xki (S(2) ). (1.16)

Furthermore, tr( Q lk Sz(t)) � qlk is satis“ed because tr(Q lk Sz(t)) =
ttr( Q lk S(1) ) + (1 Š t)tr( Q lk S(2) ) � tqlk + (1 Š t)qlk = qlk .

This lemma establishes the basic structure of the channel gain
regions. The exact shape depends on the power constraints and
the correlation between the channel vectorsCH

i h i of the users, as
illustrated in Figure 1.12. If we consider a total power constraint, � k

resembles a triangle when the user channels are almost orthogonal (see
Figure 1.12(a)), while it looks a line from the origin if the channels
are almost parallel (see Figure 1.12(b)). Furthermore, the relative
path losses 
 CH

i h i 
 2 determine if the region looks thin or fat (see
Figure 1.12(c)-(d)).

The relationship between individual user performance and channel
gain regions is observed from the following SINR expression for MSk ,

SINRk (x1k (S1), . . . ,xK r k (SK r )) =
xkk (Sk )

� 2
k +

�

i �I k

x ik (Si )
. (1.17)

From (1.17) the monotonicity of the SINR with respect to the di�erent
channel gains is easily observed. The SINR of MSk is strictly monotonic
increasing in xkk (Sk ) and strictly monotonic decreasing in x ik (Si ) for
all interfering links i � I k . The con”ict between the SINR expressions
of di�erent links becomes visible: increasing the own channel gainxkk

might increase the channel gainxki at some other useri and thereby
lower its SINR.
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(a) Almost Orthogonal Channels

(c) Unequal Path Losses (d) Equal Path Losses

(b) Almost Equal Channels

Fig. 1.12 Examples of channel gain regions with di�erent shap es, but all being compact and
convex. (a) and (b) illustrate the extremes of almost orthogon al and parallel channel vectors,
respectively. (c) and (d) illustrate unequal and equal path l osses� C H

i h i � 2 , respectively.

The user performance function introduced in De“nition 1.4 can also
be expressed as a function of the channel gains,

gk (SINRk ) = gk (x1k (S1), . . . ,xK r k (SK r )) . (1.18)

By the monotonicity of the user performance function it follows that
gk (·) is also strictly monotonic increasing in xkk (Sk ) and strictly mono-
tonic decreasing inx ik (Si ) for all interfering links i � I k .

1.4.2 Multi-Objective Resource Allocation

The channel gain regions highlight the inherent con”ict and tradeo�s
that appear when we want to maximize the performance of multiple users
simultaneously. Each user has its own objectivegk (SINRk ) to be opti-
mized, thus there areK r di�erent objectives that typically are con”icting.
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Optimization problems with multiple objectives appear naturally in
many engineering “elds to model tradeo�s between, for example, appli-
cation performance, operational expenses, logistics, and environmental
impacts. To analyze and obtain insights on such problems „ without
imposing any additional structure „ it is common to formulate them
mathematically as multi-objective optimization problems (MOPs). This
tutorial will present and utilize some results and methods from themath-
ematical “eld of MOPs, but we refer to [38] for an in-depth survey.

Without loss of generality, our resource allocation problem is for-
mulated as

maximize
S1 � 0N ,...,SK r � 0N

{ g1(SINR1), . . . ,gK r (SINRK r )}

subject to
K r�

k=1

tr( Q lk Sk ) � ql � l.
(1.19)

This MOP can be interpreted as searching for a transmit strategy
S1, . . . ,SK r that satis“es the power constraints and maximizes the per-
formancegk (SINRk ) of all users [38]. Since the performance of di�erent
users are coupled by both power constraints and inter-user interference,
there is generally not a single transmit strategy that simultaneously
maximizes the performance of all users. For example, SINRk in (1.11)
improves if less interference is caused to MSk , but decreasing the inter-
ference at MSk typically requires decreasing the useful signal power
at other users and thereby degrading their SINRs. To study the con-
”icting objectives of a MOP it is instructive to consider the set of all
feasibleoperating points g = [ g1 . . . gK r ]T in (1.19) [38], which we call
the performance region.14

De“nition 1.7. The achievableperformance region R � RK r
+ is

R =
�


g1(SINR1), . . . ,gK r (SINRk )
�
: (S1, . . . ,SK r ) � S

�
(1.20)

where S is the set of feasible transmit strategies:

S=

	

(S1, . . . ,SK r ): Sk � 0N ,
K r�

k=1

tr( Q lk Sk ) � ql � l

�

. (1.21)

14 The performance region can also be called the utility region or something that re”ects the
choice of user performance function (e.g., capacity region, rate region, or MSE region).
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This region describes the performance that can be guaranteed
to be simultaneously achievable by the users.15 The K r -dimensional
performance region is nonempty as{ 0K r × 1} � R and its shape depends
strongly on the channel vectors, power constraints, and dynamic coop-
eration clusters. In general,R is not easily characterized and might be
a nonconvex set, but we can prove thatR is compact and normal [274].

De“nition 1.8. A set T is called normal on S � RK r if for any
point r � T , all r 	 � S with r 	 � r also satisfy r 	 � T (componentwise
inequality).

Normal sets are also known as comprehensive sets [39, 193].

Lemma 1.2. The achievable performance regionR is compact and
normal on RK r

+ .

Proof. To prove that R is a compact set, observe that the set of fea-
sible transmit strategies S in (1.21) is compact. Next, observe that
gk (SINRk ) are continuous functions of S1, . . . ,SK r by de“nition. The
compactness ofR follows by invoking [219, Theorem 4.14], which says
that the continuous mapping of a compact set is also a compact set.
SinceR is the image of a continuous mapping fromS, it is compact.

Proving that R is normal on RK r
+ is a bit involved, although this

property is quite intuitive. We outline the proof from [14, Lemma
5.1]. For any given r = ( r1, . . . , rK r ) � R , we need to show that any
r 	 = ( r 	

1, . . . , r 	
K r

) � RK r
+ with r 	 � r also belongs toR. To this end, let

S

1, . . . ,S


K r
be a feasible transmit strategy that attains r and consider

the alternative transmit strategy p1S

1, . . . ,pK r S


K r
, wherep1, . . . ,pK r is

a set of power allocation coe�cients that should belong to

A =

	

(p1, . . . ,pK r ):
K r�

k=1

pk tr( Q lk S

k ) � ql � l

�

(1.22)

15 Nonconvex performance regions can be increased by allowing f or time-sharing between
multiple operating points. This approach gives a region tha t equals the convex hull of
R , but the corresponding resource allocation problems are very c omplicated and not
considered in this tutorial. The general framework for time-s haring in [39] can however
be combined with the results in this tutorial. We also note tha t time-sharing can be
viewed as part of the scheduling; see Section 4.7.
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to make the strategy feasible. Obviously, the point r is achieved by
selecting (p


1, . . . ,p

K r

) = (1 , . . . ,1). To prove that a given r 	 � r also
belongs to R, we need to “nd (p1, . . . ,pK r ) � A that gives this point.
This corresponds to the conditions SINRk = gŠ 1

k (r 	
k ) � k, which can

be formulated as K r linear equations and solved using the approach
in [205]. Finally, the existence of a (p1, . . . ,pK r ) � A for any r 	 � r can
be proved using interference functions, see [227, Theorem 3.5].

This means that for any point g � R , all points that give weaker
performance than g are also in R. This property is very natural and
rational. In fact, if a region is not normal it looks very unnormal; see
the illustrations in Figure 1.13 where only (b)…(f) are possible shapes
for a performance region, while (a) is not a simply-connected set (i.e.,
contains holes) and has a strange boundary. Figure 1.13 also illustrates
how the interference coupling and power constraints a�ect the region:
(b) represents the degenerate case when the user have orthogonal chan-
nels and individual power constraints, while (c)…(f) describe a gradually
increasing coupling between the users. Roughly speaking,R is convex
when the users are weakly coupled and concave under strong coupling,
while practical performance regions are hybrids of these extremes.

Apart from being compact, the performance region can also be
upper bounded by a certain box.

De“nition 1.9. A box is denoted [a,b], for some a,b � RK r , and is
the set of all g � RK r such that a � g � b (componentwise inequality).

Lemma 1.3. The performance regionR satis“es R � [0,u], whereu =
[u1 . . . uK r ]T is called the utopia point. The element uk is the optimum
of the single-user optimization problem

maximize
Sk � 0N

gk

�
hH

k D kSkD H
k hk

� 2
k

�

subject to tr( Q lk Sk ) � ql � l.

(1.23)

Proof. The single-user problem in (1.23) is achieved from the MOP
in (1.19) by setting Si = 0N for all i �= k. As inter-user interference
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Fig. 1.13 Examples of compact regions with di�erent shapes. O nly (b)…(f) are normal and
can thus be performance regions. The outer boundaries of (c), ( e), (f) satisfy the conditions
for both weak and strong Pareto optimality, while the horizon tal and vertical parts of the
outermost boundaries in (b) and (d) only satisfy weak Pareto o ptimality.

only can reduce SINRk , (1.23) provides an achievable upper bound on
the performance of MSk and it follows that R � [0,u].

The utopia point u is the unique solution to (1.19) in degenerate
scenarios (when the optimization decouples and all users can achieve
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Fig. 1.14 Example of a performance region. The utopia point is shown, along with the
single-user points achieved by solving (1.23).

maximal performance simultaneously, see Figure 1.13(b)). In general,
u �� R and represents an unattainable upper bound on performance; see
Figure 1.14. Since there is no total order of vectors inRK r

+ , we can only
achieve a set of tentative vector solutions to (1.19) which are mutually
unordered. These tentative solutions are all operating points inR that
are not dominated by any other feasible point. These points are called
Pareto optimal and are such that the performance cannot be improved
for any user without deteriorating for at least one other user.

De“nition 1.10. A point y � Rn
+ is a strong Pareto optimal point of

a compact normal setT � Rn
+ , if y � T while { y 	 � Rn

+ : y 	 � y } � T \
{ y } =  . The set of all strong Pareto optimal points is called thestrong
Pareto boundary of T and is denoted� T .

In addition, a point y � Rn
+ is a weakPareto optimal point of a com-

pact normal set T � Rn
+ , if y � T while { y 	 � Rn

+ : y 	 > y} � T =  .
The set of all weak Pareto optimal points is called theweak Pareto
boundary of T and is denoted� + T .

This de“nition distinguishes between (a) the strong Pareto bound-
ary � R where the performance cannot be unilaterally improved forany
user and (b) the weak Pareto boundary� + R where we might be able
to improve performance for some of the users but not simultaneously
for all users. The strong Pareto boundary can be seen as the proper
de“nition of the tentative solutions to a MOP, but we will see that
the weak de“nition has better structural and analytical properties. T he
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strong Pareto boundary is always a subset of the weak Pareto boundary:
� R � � + R. The di�erence is visualized in Figure 1.13(b),(d), where the
weak Pareto boundary contains the whole outermost boundary (includ-
ing the vertical and horizontal parts) while the strong Pareto boundary
only contains a subset of it. The single-user points [0. . .0 uk 0. . .0]T are
always Pareto optimal, but might only satisfy the conditions for weak
Pareto optimality.

Knowing that R is a normal, compact, and contained in [0,u] sim-
pli“es the search for weak Pareto optimal points, particularly since
these properties imply that R is simply-connected (i.e., contains no
holes). We have the following result.

Lemma 1.4. The weak Pareto boundary � + R of the performance
region R is a compact and simply-connected set.

Proof. The compactness follows from thatR is bounded and that the
limit of any sequence of weak Pareto points must be contained in� + R
(easily shown by contradiction, see [40, Proposition A.3.4]).� + R is
simply-connected if there is a path in the set between any two points
r 1, r 2 � � + R. As R is normal there will always be a path betweenr 1

and r 2 that goes through the interior of R , and every point on this
path can be replaced by a dominating weak Pareto point to construct
a Pareto optimal path; thus, � + R is simply-connected.

In comparison, the strong Pareto boundary� R need not be simply-
connected, but can be a disconnected subset of the weak Pareto bound-
ary. Therefore, it is easier to search for and characterize the weak Pareto
boundary. This is mainly an academic limitation, because� R = � + R
in most realistic scenarios. The explanation is that there are no truly
orthogonal channels or resources in practice, thus there will always be
some interference leakage that prevents unilateral improvements.As
all properties of � + R also hold for � R , we sometimes refer to both as
simply the Pareto boundary. We will later describe di�erent algorithms
for solving MOPs and as the Pareto boundary contains all tentative
solutions, searching for Pareto optimal points is always an important
part of such algorithms.
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By the monotonicity of the user performance functionsgk (·) on the
channel gainsxki (Sk ), there is a tight connection between the Pareto
boundary of R and certain parts of the channel gain regions �k . Since
the channel gain regions are not normal, we need to make a few de“ni-
tions before specifying this relationship.

De“nition 1.11. A vector x dominates a vector y in direction e �
{Š 1,+1 } n , written as x � e y , if x i ei � yi ei for all i = 1 , . . . ,n and there
is at least one strict inequality.

Using this terminology, it is possible to describe the part of the
boundary of a compact convex set we are interested in.

De“nition 1.12. A point y � Rn
+ is called an upper boundary point

of a compact convex setC � Rn
+ in direction e � {Š 1,+1 } n if y � C

while the set { y 	 � Rn
+ : y 	 � e y} � Rn

+ \ C. We denote the set of upper
boundary points in direction e as � eC.

An illustration of the de“nition is shown in Figure 1.15. The upper
boundaries in the three directionse1 = [+1 + 1] T , e2 = [+1 Š 1]T , and
e3 = [ Š1 + 1]T are shown by the arrows. Note that the direction vector
with all components equal to Š1 is typically not of interest, as the

Fig. 1.15 Example of a channel gain region with upper boundary in direction e1 = [+1 +
1]T , e2 = [+1 Š 1]T , and e3 = [ Š 1 + 1] T .
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corresponding upper boundary is the origin. Also note that the upper
boundary in direction e1 coincides with the usual Pareto boundary.

Lemma 1.5. Suppose the strong Pareto boundary of the performance
region R is achieved by a transmit strategyS1, . . . ,SK r . For eachk, the
matrix Sk also achieves the upper boundary of the channel gain region
� k in the direction ek = [ Š1 . . . Š 1 + 1 Š 1 . . . Š 1]T , where only the
kth component is positive.

Proof. The proof works by contradiction. Assume that S1, . . . ,SK r

achieve the strong Pareto boundary ofR but there is a user k that
does not achieve the upper boundary of �k in direction ek . Then, it is
possible to shift the operating point xk (Sk ) in � k in the direction of the
kth component without changing the other K r Š 1 components; that
is, we can “nd x 	

k � � k with increased channel gainx 	
kk > x kk for the

intended user and the same channel gainsx 	
ki = xki for all other users

i �= k. Since this new x 	
k � � k there exists a correspondingS	

k which
achieves this point. Using the same set of signal correlation matrices
for all other users but replacing Sk with S	

k leads to improved perfor-
mance of userk and unchanged performance for all other users. This is
a contradiction to the assumption that S1, . . . ,SK r achieved the strong
Pareto boundary of R.

The directions in Lemma 1.5 correspond to the monotonicity of
the user performance functions on the channel gains. The performance
function of user k is monotonically increasing inxkk and monotonically
decreasing in all other channel gains, therefore we want to maximize the
channel gainxkk and minimize all other channel gains. This corresponds
to a direction ek = [ Š1 . . . Š 1 + 1 Š 1 . . . Š 1]T with [ ek ]k = 1.

1.5 Basic Properties of Optimal Resource Allocation

Having de“ned the user performance functions and the concepts of per-
formance region and channel gain regions, we have su�cient structure
to derive two fundamental properties of the optimal multi-objectiv e
resource allocation:
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€ Su�ciency of single-stream beamforming;
€ Conditions for full power usage.

These optimality properties are derived in this subsection. Taking these
properties into account when solving (1.19) will greatly reduce the
search space for optimal solutions. We will utilize the derived properties
for simpli“ed resource allocation in the remainder of this tutorial.

1.5.1 Su�ciency of Single-Stream Beamforming

The “rst property is the su�ciency of having signal correlation matri -
cesSk that are rank one. This might seem intuitive when each user only
has a single (e�ective) receive antenna and is often assumed in resource
allocation without discussion (see e.g., [59, 263, 264, 280, 308, 329]).
In general, high-rank solutions might be necessary for optimality „ it
depends on the type of user performance functions and receive process-
ing that is considered. In this tutorial, we assume single-user detection
and gk (·) of the type in De“nition 1.4. We will show that it is su�cient
(but not always necessary) to consider signal correlation matrices with
rank one under these conditions. As the rank equals the number of data
streams, this is calledsingle-stream beamforming. First, we give a toy
example from [18] showing that high-rank solutions sometimes can give
the same performance (but never better) than the rank-one solutions.

Example 1.9 (Rank of Optimal Strategy). Consider a point-to-
point system (K t = K r = 1) with N = 2 transmit antennas, the channel
vector h1 = [1 0]T , and per-antenna power constraints

tr
��

1 0
0 0

�
S1

�
� 1, tr

��
0 0
0 1

�
S1

�
� 1. (1.24)

The MOP in (1.19) reduces to a single-objective resource allocation
problem which is solved optimally by both the rank-one matrix S1 =
[1 0
0 0] and by the rank-two matrix S1 = [ 1 0

0 1].

To prove the su�ciency of rank-one signal correlation matrices, we
will make use of some basic results in optimization theory (see Sec-
tion 2.1 for an introduction to this topic). We start with a lemma.
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Lemma 1.6. Consider the optimization problem

maximize
V � 0

tr( AV )

subject to tr( B m V ) � bm m = 1 , . . . ,M,
(1.25)

with an arbitrary Hermitian matrix A , Hermitian matrices B m � 0
that satisfy

� M
m=1 B m � 0, and scalarsbm � 0 � m.

This problem is linear in V (and hence convex) and always has
optimal solutions with rank( V ) � 1.

Proof. This is a linear optimization problem in V (see Sec-
tion 2.1). The Lagrangian function is L (V , � ) = Štr( AV ) +� M

m=1 � m (tr( B m V ) Š bm ) and the dual problem is

minimize
� m � 0

M�

m=1

� m bm

subject to
M�

m=1

� m B m Š A � 0.

(1.26)

Observe that (1.25) and (1.26) are always feasible becauseV = 0
satis“es all primal constraints and

� M
m=1 B m � 0 implies dual feasibil-

ity. Therefore, strong duality holds (see Lemma 2.4) and the KKT con-
ditions are necessary and su�cient for any optimal solution to (1.25):

tr( B m V ) � bm � m, (1.27)
M�

m=1

� m B m Š A � 0, (1.28)

� m (tr( B m V ) Š bm ) = 0 � m, (1.29)

tr

�

V

�
M�

m=1

� m B m Š A

��

= 0 , (1.30)

V � 0, � m � 0 � m. (1.31)
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To prove the su�ciency of rank-one solutions V = vv H , we consider
the following alternative optimization problem

maximize
v

v H Av

subject to v H B m v � bm � m.
(1.32)

We want to show that every optimal solution v 
 to (1.32) also
satis“es (1.27)…(1.31) forV = v 
 (v 
 )H and thus is optimal for (1.25).
Although the cost function in (1.32) is generally nonconvex, the
constraint functions are convex and thus the KKT conditions are nec-
essary forv 
 (see Lemma 2.2). Now, observe that (1.26) is also the dual
problem of (1.32), therefore the feasibility is ensured by the same argu-
ment as above. Furthermore, (1.27) and (1.28) are satis“ed byv 
 and
its corresponding Lagrange multipliers µ


m . Next, (1.29) follows from
the corresponding complementarity condition µ


m (v H B m v Š bm ) = 0.
Finally, (1.30) follows from multiplying the stationarity condition
of (1.32),


 � M
m=1 � m B m Š A

�
v = 0, with v H from the right-hand

side.

Before we show the su�ciency of rank-one signal correlation matri-
ces for the performance regionR, we show the corresponding su�ciency
for the channel gain regions �1, . . . , � K r .

Lemma 1.7. All upper boundary points of the channel gain region � k

in some arbitrary direction e � {Š 1,+1 } K r can be achieved by signal
correlation matrices with rank( Sk ) � 1.

Proof. Since � k is convex and compact, the boundary can be achieved
using the Supporting hyperplane theorem [273, Theorem 1.5] by the
following optimization problem

maximize
Sk � 0

K r�

i =1

� i xki (Sk )

subject to tr( Q lk Sk ) � qlk � l.

(1.33)
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The objective function in (1.33) can be rewritten as

K r�

i =1

� i xki (Sk ) =
K r�

i =1

� i hH
i C i D kSkD H

k CH
i h i

=
K r�

i =1

� i tr( D H
k CH

i h i hH
i C i D kSk )

= tr

�
K r�

i =1

� i D H
k CH

i h i hH
i C i D k

� � �
A k

Sk

�

.

(1.34)

This is an optimization problem of the form (1.25) and thus the exis-
tence of solutions with rank(Sk ) � 1 follows from Lemma 1.6.

Note that rank( Sk ) � 1 implies that the signal correlation matrix Sk

is either rank one or identically zero;Sk = 0N means no transmission.
By Lemma 1.7, the su�ciency of single-stream beamforming follows

immediately for the performance region.

Theorem 1.8. Every point in the performance region R (including
the weak Pareto boundary) can be achieved using single-stream beam-
forming (i.e., rank(Sk ) � 1 � k).

Proof. Lemma 1.7 shows that the boundary of each channel gain region
� k is obtained by Sk with rank( Sk ) � 1. Since the strong Pareto bound-
ary of the performance region is achieved by transmit strategies which
achieve also the boundary of the channel gain regions (see Lemma 1.5),
su�ciency of rank( Sk ) � 1 follows. To show that also points on the
weak Pareto boundary (and all other points in R) are achievable by
rank-one solutions, we can simply repeat the approach in the proof of
Lemma 1.2 (which showed thatR is normal by “xing the beamforming
directions and changing the power allocation).

The implication of Theorem 1.8 is that any operating point in R
(and particularly Pareto optimal points) can be achieved using single-
stream beamforming, thus all tentative solutions to the MOP in (1.19)
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are achievable by Sk = vkv H
k for some beamforming vectors vk �

CN × 1 � k. Without loss of generality, we can reformulate (1.19) as

maximize
v 1 ,...,v K r

{ g1(SINR1), . . . ,gK r (SINRK r )}

subject to SINRk =
|hH

k CkD kvk |2

� 2
k +

�

i �= k
|hH

k CkD i v i |2
� k,

K r�

k=1

v H
k Q lk vk � ql � l.

(1.35)

Considering (1.35) instead of (1.19) greatly reduces the search space
for optimal solutions and makes the solution easier to implement in
practice, because vector coding or successive interference cancelation
are required if rank(Sk ) > 1 [89]. The problem formulation in (1.35)
will be used as the starting point in the remainder of this tutorial.

1.5.2 Conditions for Full Power Usage

If only the total transmit power over all base stations is constrained, it
is trivial to prove that any Pareto optimal solution to (1.19) and (1.35)
will use all available power. Under general power constraints, it maybe
better not to use full power at each transmitter or antenna; there is a
balance between increasing channel gains of useful signals and limiting
the interference. This is illustrated by the following toy example, which
is based on [18].

Example 1.10 (Limited Power Usage). Consider a two-user inter-
ference channel with single-antenna base stations (K t = K r = 2, N1 =
N2 = 1) and the channel vectorsh1 = [1

�
1/ 10]T and h2 = [

�
1/ 2 1]T .

BSj transmits to MS j and coordinates interference to both users, mean-
ing that D 1 = [ 1 0

0 0], D 2 = [ 0 0
0 1], and C1 = C2 = I 2. The per-transmitter

power is constrained as tr (D j Sj ) � 20 � j .
The single-user point of MS1 is achieved byS1 = 20D 1 and S2 = 02,

while the corresponding point for MS2 is achieved byS1 = 02 and S2 =
20D 2. Observe that only the base station associated with the active user
is satisfying its power constraint with equality.
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Furthermore, the operating point where both users have exactly the
same SINR is achieved byS1 = 10D 1 and S2 = 20D 2. This transmit
strategy gives SINR1 = SINR 2 = 10

3 . Observe that only BS2 uses full
power and if BS1 would increase its power then SINR2 decreases. This
shows that this is a strong Pareto optimal point.

In principle, knowing that a certain constraint is active (i.e., satis“ed
with equality at the optimal solution) removes one dimension from the
resource allocation problem. The following theorem provides conditions
for when full power should be used in general multi-cell systems.

Theorem 1.9. The following holds for the multi-objective resource
allocation problems (1.19) and (1.35):

€ Every weak Pareto optimal point can be achieved by a trans-
mit strategy that satis“es at least one power constraint with
equality.

€ If only the total power per transmitter is constrained, then
every strong Pareto optimal point requires that BSj uses full
power if D j �=  and the channelsh jk for all users k � C j are
linearly independent.

Proof. If ql = 0 for some l, the “rst part of the theorem is always satis-
“ed. Now assume that ql > 0 � l . Let S


1, . . . ,S

K r

be a transmit strategy
that achieves the weak Pareto boundary and assume that all power
constraints in (1.4) are inactive. We de“ne

� = max
1� l � L

K r�

k=1

tr( Q lk S

k )

ql
(1.36)

and note that � > 1 since all constraints are inactive. The alternative
strategy � S


1, . . . , � S

K r

will satisfy all constraints and at least one of
them will be active. The performance is not decreased since� can be
seen as decreasing the relative noise power in each SINR in (1.11).
Thus, there always exists a solution with at least one active constraint.
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The second part is proved by contradiction. Suppose�S1, . . . , �SK r

achieves a strong Pareto optimal point and that BSj is not using full
power (but satis“es the conditions in the theorem); that is,

K r�

k=1

tr
�

Qper-BS
jk

�Sk

�
< q j (1.37)

whereQper-BS
jk was de“ned in (1.10). The assumption of linear indepen-

dence means that it existsk � D j with

h jk �� span

 

!
�

i �C j \{ k}

{ h ji }

"

# . (1.38)

Therefore, it exists a unit-norm vector v �= 0N j × 1 such that hH
jk v �= 0

and hH
ji v = 0 for all i � C j \ { k} (i.e., a zero-forcing vector). Then, the

alternative signal correlation matrix Sk = �Sk + �v �v H with

�v =

�

� 01× N1+ ···+ N j Š 1

$
qj Š

�

k

tr( Qper-BS
jk

�Sk )v T 01× N j +1 + ···+ × NK t

�

�

T

(1.39)

will strictly increase the signal power and cause exactly the same inter-
user interference as�Sk . As gk (·) is strictly increasing we have unilater-
ally improved the performance of MSk which is a contradiction to the
strong Pareto optimality.

The “rst implication from Theorem 1.9 is that at least one power
constraint should be active at any Pareto optimal point. Second,
observe that the linear independence of user channels is a very mild
condition when |Cj | � N j (e.g., satis“ed with probability one when the
channel realizations are drawn from a stochastic distribution with non-
singular covariance matrices). Roughly speaking, the fewer users that
a base station coordinates interference to, the more power is used at
this base station at strong Pareto optimal points. The condition on
linear independence can be relaxed to the existence of (at least) one
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user in D j with a channel linearly independent to all other users inCj

that are actually scheduled (i.e., receive nonzero signal power).

1.6 Subjective Solutions to Resource Allocation

Recall that the Pareto boundary of the performance region contains all
tentative solutions to the MOP in (1.35), each representing a certain
tradeo� between the users• performance. Whenever the utopia point
is outside of the performance region, there is no objectively optimal
resource allocation „ there are multiple strong Pareto optimal points
and none of these are distinctly better than the others. To actually com-
pare the merits of di�erent Pareto optimal points, the system designer
(or decision maker) needs to bring in its own subjective perspective on
system utility. Di�erent methods to obtain subjectively optim al solu-
tions are outlined in this section and will be the subject of the subse-
quent sections of this tutorial.

A common approach is to let the system designer describe its pref-
erences as an aggregate system utility functionf : R 	 R that takes
any point in R as input and produces a scalar value describing how
preferable this point is (large output means high preference).

De“nition 1.13(System Utility Function). A system utility func-
tion is denotedf (g1(SINR1), . . . ,gK r (SINRK r )) and is Lipschitz contin-
uous16 and monotonically increasing17 on [0,u].

This de“nition incorporates most system utility functions that
appear in literature. In fact, many frequently used functions arestrictly
increasing functions, as seen in the following example [130, 168].

Example 1.11 (System Utility Functions). For a given operat-
ing point g = ( g1, . . . ,gK r ) � R , the following system utility functions

16 A function f : [a,b ] � R is Lipschitz continuous with Lipschitz constant L f if |f (g) Š
f (g � )| � L f � g Š g � � 1 for all g,g � � [a, b ].

17 A function f : Rn � R is monotonically increasing if for any g,g � � Rn such that g � g �

it follows that f (g) � f (g � ). The function is strictly monotonically increasing if for any
g,g �� � Rn such that g > g �� , it also follows that f (g) > f (g �� ).
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satisfy18 De“nition 1.13:

€ Weighted arithmetic mean: f (g) =
�

k wkgk

(also known as weighted sum utility);
€ Weighted geometric mean:f (g) =

%
k gwk

k
(also known as weighted proportional fairness [130]);

€ Weighted harmonic mean:f (g) =
� �

k
wk
gk

� Š 1
;

€ Weighted max-min fairness:f (g) = min k
gk
wk

(also known as weighted worst-user performance);
€ Weighted compromise:f (g) = Š(

�
k (wk (r 


k Š gk ))p)1/p

(for some reference pointr 
 � Rn
+ \R and 1 � p � � ).

The weighting factors wk � 0 can be taken to have unit sum,� K r
k=1 wk = 1, without loss of generality. In case of equal weighting

factors, the arithmetic mean maximizes the aggregate system utility�
k gk , while the geometric mean, harmonic mean, and max-min fair-

ness gradually sacri“ce aggregate utility to achieve more fairness among
the users. For a given type of system utility function, the weighting fac-
tors can compensate for heterogeneous user channel conditions, handle
delay constraints, enforce subscription pro“les, etc.

There are other system utility functions, for example, the � -
proportional fairness in [179] that bridges the gap between proportional
fairness and max-min fairness by varying a parameter (the arithmetic
and harmonic means are also represented by certain parameter values).
Weighted utilities for best-e�ort users are given in [112].

Based on a system utility function, the multi-objective optimiza-
tion problem in (1.35) can be converted (calledscalarization) to the

18 Every continuously di�erentiable function is locally Lipsc hitz continuous, but some func-
tions are not globally Lipschitz since the “rst derivative b ecomes in“nite when approach-
ing the origin. The weighted geometric mean

�
k gw k

k has such problems, but this can
be resolved by optimizing

�
k gcw k

k instead where c is selected to make cwk > 1 k. The
weighted harmonic mean also needs additional treatment.
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following single-objective optimization problem

maximize
v 1 ,...,v K r

f (g1(SINR1), . . . ,gK r (SINRK r ))

subject to SINRk =
|hH

k CkD kvk |2

� 2
k +

�

i �= k
|hH

k CkD i v i |2
� k, (1.40)

K r�

k=1

v H
k Q lk vk � ql � l.

This problem has a single (nonunique) solution, because the system
utility function resolves the con”icting interests in the MOP. The selec-
tion of f (·) is therefore very important and should be based on a pro-
found knowledge ofR „ the alternative of just selecting f (·) out of
the blue corresponds to making decisions without knowing the alter-
natives. Two of the main objectives of this tutorial is to characterize
the performance region and develop a framework for solving any single-
objective resource allocation problem of the form (1.40). The latter can
be viewed as anetwork utility maximization [40, 53, 131, 194], thus we
can utilize many of the results on distributed optimization that has
been developed under this umbrella; see Section 4.2.

Remark 1.2 (All Utility Functions are Subjective). Observe
that all utility functions are subjective by nature, because each func-
tion imposes a certain order of vectors in the performance region and in
RK r

+ . Although this transforms the resource allocation into the tractable
form (1.40) where there is a single solution, this is only because all other
Pareto optimal points are discarded by the choice off (·). Therefore,
we stress that the particular choice of f (·) should always be clearly
motivated in research papers and not considered as given beforehand.

The basic connection betweenR and f (·) is given by the following
important result.

Lemma 1.10. If f (·) is an increasing function, then the global
optimum to (1.40) is attained on � + R. In addition, for any �g � � + R
there exists a (strictly) increasing f (·) for which (1.40) has �g as global
optimum.



164 Introduction

Proof. For the “rst statement, assume that ḡ �� � + R is a global opti-
mum to (1.40). By the de“nition of the weak Pareto boundary and
using that f (·) is increasing, there exist a pointg	 � � + R with g	 � ḡ.
This point satis“es f (g	) � f (ḡ) and therefore also solves (1.40).

The second statement is proved using the weighted max-min fairness
function f (g) = min { k: �gk > 0} gk / �gk for given �g = (�g1, . . . , �gK r ) � � + R.
Obviously, maxg�R f (g) � f ( �g) = 1 and assume for the purpose of con-
tradiction that there exists g
 � R that achieves strict inequality. This
means that g
 > �g and thus �g cannot be a weak Pareto optimal point
since it requires{ y 	 � Rn

+ : y 	 > �g} � R �=  (see De“nition 1.10). This
contradiction yields maxg�R f (g) = f ( �g) and thus �g is the (nonunique)
global optimum.

Based on this lemma, we only need to search the weak Pareto bound-
ary of R to solve any resource allocation problem of the form (1.40).
Unfortunately, this is not as simple as it seems; we will show in Section 2
that (1.40) can only be solved in an e�cient manner in certain special
cases (e.g., depending onf (·), the number of transmit antennas, and
the structure of the power constraints).

Similar to Lemma 1.10, there is an important connection
between (1.40) and the channel gain regions.

Corollary 1.11. Suppose the solution to the optimization problem
in (1.40) is achieved by signal correlation matricesS1, . . . ,SK r (with
rank(Sk ) � 1� k). Each Sk achieves a point on the upper boundary of
the corresponding channel gain region �k in direction ek for all k.

Proof. The corollary follows from the monotonicity of f (·), Lemma 1.5,
and Lemma 1.10.

It is important to note that the set of transmit strategies that
achieve points on the upper boundaries of the channel gain regions
is much larger than the set of transmit strategies that achieves oper-
ating points on the Pareto boundary of R, which again is much larger
than the set of transmit strategies that maximizes f (·) in (1.40). The
reason is that the upper boundary of each of the K r channel gain
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regions has dimensionK r Š 1 whereas the Pareto boundary ofR has
only dimension K r Š 1.

1.6.1 Four Methods to Solve Resource Allocation Problems

We have shown how scalarization converts the MOP in (1.35) into a
single-objective problem (1.40) with a single solution. There are di�er-
ent ways of utilizing scalarization for “nding a Pareto optimal point
that makes the system designer satis“ed. The preferable approach
depends on how well the system designer can specify its subjective
views in mathematical terms, and whether the system designer is tak-
ing an active or passive part in the optimization. The di�erent method s
can be categorized as follows [38, 324]:

(1) No-preference methodsare applied when the system designer
has no subjective preference on the “nal solution. To empha-
size neutrality, (1.40) can be solved using a weighted system
utility function (see Example 1.11) where the weighting fac-
tors are used for normalization (i.e., using the utopia point
for weighting as wk = uk� K r

i =1 u i
).

(2) A priori methods are used when the system designer has
a clear invariable goal, corresponding to a certainf (·). For
instance, an optimistic reference pointr 
 might be given in
advance and the optimal solution minimizes the distance to
this point as f (g) = Š
 r 
 Š g
 p in the L p-norm (i.e., a com-
promise problem). Maximizing the sum utility is another
example. Any prior knowledge of the performance region and
system-wide preference on the “nal solution should be taken
into account when selectingf (·).

(3) A posteriori methods generate a set of sample points on the
Pareto boundary (the whole set is in“nite and nontrivial to
characterize) and let the system designer select among these
points. Based on Lemma 1.10, sample points are achieved by
solving (1.40) for a set of di�erent system utility functions.
For example, a certain type of function can be selected from
Example 1.11 and the weighting factors are then varied over
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a grid. Keep in mind that the whole Pareto boundary cannot
be reached by all types of functions (see Remark 1.3).

(4) Interactive methods can be viewed as an iterative combi-
nation of a priori and a posteriori methods, where each
iteration generates new sample points on the Pareto bound-
ary based on previous suggestions from the system designer.
The advantage of this approach is that the preference of
the system designer can be modi“ed as the shape of Pareto
boundary (i.e., the di�erent alternatives) is learned, thus giv-
ing a kind of psychological convergence to the “nal solution.

All of these methods involve one or multiple scalarizations of the
MOP into SOPs of the form (1.40). Section 2 will therefore be devoted
to solving SOP for any choice off (·). Section 3 derives structure on the
optimal transmit strategies and parameterizes the Pareto boundary.
Based on the knowledge and experience from these sections, we will
return to the aforementioned four methods in Section 3.5. We will then
shed light on how these methods can be formulated and implemented
e�ciently for practical resource allocation.

Remark 1.3 (Shortcomings of Weighted Arithmetic Mean).
It has become a common practice to optimize the weighted arithmetic
mean (e.g., the weighted sum information rate) in the area of commu-
nications. This could make sense whenR is convex, which holds for
the ideal capacity region but not necessarily in other scenarios. Even if
all possible weights are considered, the weighted arithmetic mean only
“nds Pareto optimal points that coincide with the convex hull of R ;
this is illustrated in Figure 1.16(a). The weights are often viewed as the
relative priority of di�erent users, but the coupling is complicat ed and
can in general be misleading. First, the notion of priority makes sense
in a local area of the performance region, but the global interpretation
of the weighting is not easily characterized [216]. This is particularly
evident for nonconvex performance regions, because a small perturba-
tion in the weights can greatly a�ect the optimal operating point; see
Figure 1.16(b). Second, the physical setup makes it easier to simultane-
ously serve spatially separated users (rather than co-located users)and
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Fig. 1.16 Example of maximization of the weighted arithmeti c mean w1g1 + w2g2 for a
nonconvex performance region. The weights w1 ,w2 de“ne a line (or hyperplane of dimension
K r Š 1) that is moved away from the origin until it leaves the perfo rmance region; the “nal
intersection with the Pareto boundary gives the optimal oper ating point. (a) shows that
certain points of the Pareto boundary can never be attained by maximizing a weighted
arithmetic mean; (b) shows that a small perturbation in the w eights can move the optimal
solution from one side of the gap to the other side (i.e., from r 3 to r 4 ).

thus promotes unbalanced allocation of resources; see further examples
on inter-criteria correlation in [258]. Third, the linearity of f (·) implic-
itly assumes that degrading the performance of one user can be fully
compensated by improving for other users, which might not be rea-
sonable in practice [38]. In fact, thelaw of diminishing marginal utility
suggests thatf (·) should be nonlinear since users become increasingly
satis“ed with their current performance and less interested in further
improvements [223]. Nevertheless, maximizing the weighted arithmetic
mean guarantees Pareto optimality and has a simple geometric
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interpretation (see Figure 1.16), but the system designer should be
aware of the limitations and select the weights carefully.

Remark 1.4 (Game Theoretic Approaches). Game theory pro-
vides an alternative approach to MOPs where the users are seen as
players that compete for resources. The game can be formulated in a
variety of ways, but the Pareto boundary describes the e�cient out-
comes for any cooperative game. This approach makes particular sense
for ad hoc networks in unlicensed bands and cognitive radio, where
there is no joint decision-making and users are indeed competing for
spectrum. We refer to [68, 140, 171, 230] and references therein for
further details.

1.7 Numerical Examples

In this section, we provide a numerical example that illustrates var-
ious concepts de“ned in this section. We consider a simple scenario
with K r = 2 users, N = 3 transmit antennas, and global joint trans-
mission (as in Example 1.3). The channel vectors are generated as
hk � CN (0, I N ) (i.e., uncorrelated Rayleigh fading) and we assume per-
antenna power constraints with ql = 10 (i.e., 10 dBm). The average

single-user SNRE{ ql � h k � 2
2 }

� 2
k

is ql N for User 1 and ql
N
4 for User 2, cre-

ating an asymmetry that will highlight properties of di�erent system
utility functions.

Figure 1.17 shows the performance regions for a single random
channel realization for di�erent user performance functions. In Fig-
ure 1.17(a), the additive inverse of the MSE is considered (i.e.,
gk (SINRk ) = SINR k

1+SINR k
to make gk (0) = 0), but the “gure axes show

MSEs to enhance viewing. The information rategk (SINRk ) = log 2(1 +
SINRk ) is the user performance function in Figure 1.17(b). In both
cases, the optimal operating points are shown for the “ve functions in
Example 1.11: arithmetic mean (sum utility), geometric mean (propor-
tional fairness), harmonic mean, max-min fairness, and distance to the
utopia point. The weighting factors are w1 = w2 = 1

2 .
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Fig. 1.17 Performance regions for a single channel realizat ions for di�erent user performance
functions: (a) the inverse MSE; and (b) information rate. Th e Pareto boundary is indicated
along with the optimal operating points for di�erent system u tility functions.

It is clear that the optimal operating points for these system utility
functions are on the Pareto boundary (con“rming Lemma 1.10), but at
quite di�erent places. As noted in Example 1.11, the arithmetic mean
only cares about the aggregate system utility and ignores which user
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who gets the performance, while max-min fairness makes sure that
all users get exactly the same performance. The geometric mean and
harmonic mean are in between these extremes, taking both aggregate
system utility and user fairness into account. Searching for the point
with the smallest Euclidean distance to the utopia point is similar to
maximizing the arithmetic mean. By changing the weighting factors in
Example 1.11, the optimal point for a certain type of system utility
function can be moved around on the Pareto boundary; in fact, the
Pareto boundaries in Figure 1.17 were generated by solving weighted
max-min fairness problems over a “ne grid of weighting factors.

1.8 Summary and Outline

Coordinated multi-cell multi-antenna communication provides an
opportunity to increase the system-wide spectral e�ciency, as
compared to traditional multi-cell setups built on strict interfe rence
avoidance. There are many similarities between the single-cell and
multi-cell downlink, which can be utilized to bring insights f rom one
case to the other. However, there are also important di�erences that
need to be modeled and managed properly. In this tutorial, we de“ned a
general system model based ondynamic cooperation clustersand arbi-
trary linear power constraints. The main idea behind such clusters is
that each base station coordinates interference to exactly those users
whom it causes non-negligible interference, while only sending data
to a subset of them. As exempli“ed in this section, this framework
can jointly describe many important multi-cell scenarios, including the
Wyner model, interference channel, coordinated beamforming, global
joint transmission, cognitive radio, and spectrum sharing.

The user performance depends on functions of the SINRs (e.g., infor-
mation rate, MSE, or error probability), which in turn depends on the
selection of signal correlation matrices. Each signal correlation matrix
will generally a�ect all users, which can be illustrated by channel gain
regions. These regions were proved to be convex and compact, and the
upper boundaries in di�erent directions represent maximization of the
received signal power at di�erent users. The joint selection of signal cor-
relation matrices is called resource allocation and can be formulated as
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a multi-objective optimization problem. There is not a single solution
to such a problem, but many possible tradeo�s between maximizing
performance for individual users and maximizing the aggregate utility
of the whole system. This tradeo� is illustrated by the performance
region R, which was proved to be compact and normal. The Pareto
boundary of R contains all resource allocations that can be regarded
optimal. Furthermore, it was shown that all Pareto optimal points can
be achieved using single-stream beamforming and optimality conditions
for using full transmit power was derived.

To solve the multi-objective resource allocation problem it is nec-
essary to conclude which Pareto optimal points that are preferable for
the system. There are di�erent categories of methods and most of them
include the selection of a system utility function that assigns a value to
each point in the performance region indicating the subjective prefer-
ence of the system designer. This function can, for example, be the sum
utility or max-min fairness. This scalarizes the multi-objective problem
to a single-objective problem with a single solution.

1.8.1 Outline

Section 2 shows how to solve any single-objective optimization problem.
It becomes clear that some problem formulations enable practically
e�cient algorithms while others can only be optimally solved for o�ine
benchmarking. Section 3 reduces the search-space by parameterizing
the optimal transmit strategies and thereby characterizing the Pareto
boundary. Section 3 also provides guidelines for formulating and solving
multi-objective resource allocation problem in computationally e�ci ent
manners.

Finally, Section 4 generalizes the system model to include practi-
cal nonidealities, such as CSI uncertainty, hardware impairments, and
limited backhaul signaling. It will be shown which results on optimal
resource allocation in Sections 2 and 3 that can be easily generalized,
and which become intractable. The design of dynamic cooperation
clusters and multi-cell scheduling is also discussed. Furthermore. we
describe extensions to multi-cast transmission, multi-carriersystems,
multi-antenna users, cognitive radio, and physical layer security.
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Optimal Single-Objective Resource Allocation

The purpose of this section is to provide a systematic framework for
solving single-objective resource allocation problems, under the general
multi-cell system model de“ned in Section 1. Recall that this optimiza-
tion problem was formulated in (1.35) as

maximize
v 1 ,...,v K r

f (g1(SINR1), . . . ,gK r (SINRK r ))

subject to SINRk =
|hH

k CkD kvk |2

� 2
k +

�

i �= k
|hH

k CkD i v i |2
� k,

K r�

k=1

v H
k Q lk vk � ql � l.

(2.1)

The user performance functionsgk (·) are continuous and strictly mono-
tonically increasing, while the system utility function f (·) is Lipschitz
continuous and monotonically increasing.

In the process of “nding the globally optimal solution to (2.1),
Section 2.1 provides some basic results from optimization theory,
including classi“cation of optimization problems and Lagrange mul-
tiplier theory. Next, Section 2.2 presents some important special cases

172
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when (2.1) is convex and can be solved e�ciently. Section 2.3 describes
two systematic algorithms for solving any problem of the form in (2.1)
with guaranteed convergence to the global optimum. These itera-
tive algorithms originate from the monotonic optimization literature
in [218, 274, 275] and utilize the special cases in Section 2.2 to achieve
e�cient subproblems. Finally, Section 2.4 illustrates the large di f-
ferences in computational complexity for solving di�erent instances
of (2.1). Matlab code for some of the algorithms developed in this
section is available for download in [19].

2.1 Introduction to Single-Objective Optimization Theory

This section reviews some basic terminology and results in optimization
theory, and exemplify their impact on the resource allocation problem
in (2.1). These results are utilized throughout of this tutorial.

Consider asingle-objective optimization problem (SOP)that can be
expressed as

minimize
x

f 0(x)

subject to x � X ,
(2.2)

where x � Rn is called the optimization variable and belongs to the
closedfeasible setX . The feasible set is a subset of some box [a,b] � Rn

that we assume to be compact. The functionf 0 : Rn 	 R is the cost
function and is assumed to be continuously di�erentiable over [a,b].
A feasible vector x 
 � X is called an optimal solution to (2.2) if it
provides the smallest value (called theoptimal value), f 0(x 
 ), on the
cost function among all x � X . If the feasible set is empty (i.e.,X =  ),
the optimal value is conventionally set to +� .

To enable analysis and numerical computations, it is often more
convenient to write the SOP on standard form as

minimize
x

f 0(x)

subject to f m (x) � 0 m = 1 , . . . ,M,
(2.3)

where the M functions f m : Rn 	 R are the constraint functions. Any
constrained SOP can be rewritten on standard form [37] (but the



174 Optimal Single-Objective Resource Allocation

dimension of x might change) and (2.3) is equivalent to (2.2) if we set

X =
�

x � Rn : f m (x) � 0 m = 1 , . . . ,M
�

. (2.4)

Remark 2.1(Maximization). The SOP on standard form considers
minimization of a cost function f 0, but this is equivalent to maximiza-
tion of the additive inverse Šf 0 under identical constraints.

Example 2.1 (Resource Allocation on Standard Form). The
resource allocation problem in (2.1) can be expressed as

minimize
g

Š f (g)

subject to g � R
(2.5)

where the optimization variable g = [ g1(SINR1) . . . gK r (SINRK r )]T rep-
resents the user performance,Šf (g) is the cost function, and the per-
formance regionR equals the feasible set. This formulation shows that
resource allocation means searchingR for the vector that optimizes
system utility.

To achieve a formulation on standard form, denote the concatena-
tion of all beamforming vectors as v = [ v T

1 . . . v T
K r

]T � CNK r and let

x =
&

� (v )
� (v )

'
be the optimization variable. The cost function is f 0(x) =

Šf (g1(SINR1), . . . ,gK r (SINRK r )) and observe that SINRk is a function

of x. The constraints are given by f l (x) = xH
&

� (Q l ) Š� (Q l )
� (Q l ) � (Q l )

'
x Š ql for

l = 1 , . . . ,L , where Q l = diag( Q l1, . . . ,Q lK r ).

2.1.1 Classi“cation and Computational Complexity

The standard form in (2.3) provides a compact way of representing any
SOP, but additional information is required to analyze the problem and
devise suitable numerical algorithms. Fortunately, it is not necessary
to build the analysis from scratch for any set of cost function and
constraint functions, but there are some important classes of problems
where certain numerical algorithms can be applied to solve any instance
of the class [10, 12, 37, 274]. Some important classes are now de“ned.
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De“nition 2.1. A SOP on standard form is called a

€ linear problem if f 0, . . . , f M are linear/a�ne functions. 1 The
feasible setX becomes a convex polytope inRn .

€ convex problemif f 0, . . . , f M are convex functions.2 The fea-
sible setX becomes a convex set inRn .

€ quasi-convex problemif f 0, . . . , f M are quasi-convex func-
tions.3 The feasible setX becomes a convex set inRn .

€ monotonic problemif f 0, . . . , f M are monotonic functions (any
combination of increasing and decreasing functions). The fea-
sible setX becomes a mutually normal set.4

These four classes represent successively more general conditions:
every linear problem is also convex, every convex problem is also
quasi-convex, and every quasi-convex problem is also monotonic.5 This
relationship is illustrated in Figure 2.1. Practical optimization probl ems
could be di�cult to classify in this way and reformulations are some-
times necessary to reveal a hidden underlying structure. The authors
of [196] note that there is no systematic way of identifying and extract-
ing an underlying structure, but it is rather an art that includes m aking
good changes of variables and relaxations. Examples of such reformu-
lations are found in [11, 29, 167, 168, 296].

Most optimization problems have no closed-form solutions, but can
still be solved numerically (to any accuracy� > 0 on the optimal value).

1 A function f m : Rn � R is called a�ne on [a,b ] if for any x 1 , x 2 � [a, b ] and t � [0,1],
f m (tx 1 + (1 Š t)x 2 ) = tf m (x 1 ) + (1 Š t)f m (x 2 ).

2 A function f m : Rn � R is called convex on [a,b ] if for any x 1 , x 2 � [a, b ] and t � [0,1],
f m (tx 1 + (1 Š t)x 2 ) � tf m (x 1 ) + (1 Š t)f m (x 2 ).

3 A function f m : Rn � R is called quasi-convex on [a,b ] if for any x 1 , x 2 � [a, b ] and t �
[0,1], f m (tx 1 + (1 Š t)x 2 ) � max( f m (x 1 ), f m (x 2 )).

4 A set S is mutually normal on [a,b ] if it can be written as S = T1 � ([a,b ]\T 2 ) for two
normal sets T1 , T2 on [a,b ]. The relative complement [ a,b ]\T 2 is called a conormal set .

5 Quasi-convex functions are not necessarily monotonic, thu s it is not trivial to see that
any quasi-convex problem is also a monotonic problem. Howev er, a quasi-convex function
can be written as the di�erence of two monotonically increasi ng functions [275], which is
rather straightforward to rewrite as a monotonic problem on standard form; see [274].
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Fig. 2.1 Classi“cation of single-objective optimization p roblems in De“nition 2.1. Linear,
convex, quasi-convex, and monotonic problems have successively more general conditions
on the functions f 0 , . . . , f M .

Classi“cation of a problem enables the use of numerical algorithms
designed for this class. For example, linear problems can be solved very
e�ciently by the simplex method [136]. This method has an average-
case computational complexity that only grows polynomially with the
problem size (e.g., the number of variablesn and number of con-
straints M ), but the worst-case complexity is exponential. Interior-
point methodscan be applied to both linear and convex problems with
a polynomial worst-case complexity (at least under mild conditions such
as self-concordance [37]). General-purpose implementations of interior-
point methods are available in SeDuMi[256] andSDPT3[271]. The use
of these implementations can be simpli“ed by the high-level model-
ing languagesCVX[95] and Yalmip [161]. These implementations are
particularly good at solving convex problems with second-order cone
constraints [160] and semi-de“nite constraints, whereof the former is
particularly important in this section.

Example 2.2 (Second-Order Cone Constraint). A second-order
cone constraint is given by

f m (x) = 
 A m x + bm 
 2 + cT
m x + dm (2.6)

and is convex for any positive integernm and parametersA m � Rnm × n ,
bm � Rnm , cm � Rn , and dm � R.
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The power constraints for the resource allocation problem in (2.1)
can be written as second-order cones

f l (x) =

(
(
(
(
(

�
� (Q l ) Š� (Q l )
� (Q l ) � (Q l )

� 1/ 2

x

(
(
(
(
(

2

Š
�

ql (2.7)

for the optimization variable x =
&

� (v )
� (v )

'
(see Example 2.1).

It is important to di�erentiate between globally optimal points x 


(minimizing the cost in X ) and locally optimal points that provide the
lowest cost among the feasible points in their immediate surroundings.6

As noted by Rockafellar in [213], there is a great watershed between
convex problems and nonconvex problems; every locally optimal solu-
tion to a convex problem is also globally optimal, while this is not the
case for general nonconvex problems [37].7 Therefore, the entire feasible
set X basically needs to be searched when solving nonconvex problems,
which corresponds to a complexity that grows exponentially with the
problem size. Practical algorithms for nonconvex problems are typi-
cally designed to only search for locally optimal points, which might
be achieved with manageable complexity.

In terms of complexity, quasi-convex problems actually belong to
category of convex problems, because these can be solved by a limited
sequence of convex subproblems [37, Subsection 4.2.5]. General mono-
tonic problems have however exponential worst-case complexity, but we
can avoid searching the entire feasible set by utilizing the monotonicity;
if f 0 is monotonically decreasing andx̄ is found to be a feasible point,
then any x � x̄ provides higher cost and can be immediately discarded.
The area of monotonic optimization is relatively new, although mono-
tonicity constraints (e.g., free disposability) have appeared in economi-
cal applications for a long time [192]. In the early 2000s, Tuy et al. pro-
posed two iterative algorithms that utilize monotonicity when solving

6 Formally, a point x̄ is called locally optimal if there exist � > 0 such that f 0 (x̄ ) � f 0 (x )
for all x � X satisfying � x̄ Š x � 2 < � .

7 In addition, infeasibility of convex problems is easily det ected (e.g., using the dual function
de“ned in Subsection 2.1.2), while infeasibility might be d i�cult to detect for general non-
convex problems [167]. The resource allocation problem in (2 .1) fortunately has second-
order cone constraints and will (almost) always be feasible.
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monotonic problems: the polyblock outer approximation (PA) algo-
rithm in [218, 274] and thebranch-reduce-and-bound (BRB) algorithm
in [275]. These algorithms have exponential worst-case complexity, but
provide a structured approach that (at least) can solve small problems.

This section will show that the multi-cell resource allocation prob-
lem in (2.1) is linear, convex, quasi-convex, or monotonic depending on
the scenario. As convex problems are easily implemented and solved
using general-purpose implementations of interior-point methods (as
mentioned earlier), for each scenario we either show how to reformu-
late (2.1) into a convex problem or give algorithms that solve it as a
sequence of convex problems. To this end, we “rst review some basic
results on duality, bounding of the optimal value, and necessary (and
sometimes su�cient) conditions on the optimal solution.

Remark 2.2 (Complex-Valued Optimization Variables). The
literature on optimization theory usually considers real-valued opti-
mization variables x, but most results can be readily extended to
complex-valued variables x � Cn if the cost and constraint func-
tions are de“ned as f m : Cn 	 R for m = 0 , . . . ,M . Observe that any
complex-valued scalar c can be described by the two real-valued
scalars � (c), � (c), thus problems with complex-valued variables can
be rewritten on standard form, for example using the rule xH Ax =&

� (x )
� (x )

' H &
� (A ) Š� (A )
� (A ) � (A )

'&
� (x )
� (x )

'
for Hermitian matrices A � Cn× n . How-

ever, such reformulations are often unnecessary because the de“nitions
of linear, convex, and quasi-convex problems (see De“nition 2.1) are
applicable also for complex-valued variables. The modeling languages
CVXand Yalmip also handle such variables.

2.1.2 Lagrange Multiplier Theory

Lagrange multiplier theory provides useful tools to analyze, bound, and
solve optimization problems on standard form. In particular, it gives
optimality conditions for identifying potential solutions to constrai ned
optimization problems. These conditions generalize a well-known result
in unconstrained optimization, namely that the global minimum x̄ of
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f (x) satis“es � f (x̄ ) = 0. This subsection reviews concepts and results
that are utilized in this tutorial, while further details and proofs are
available in [37, Chapter 5].

De“nition 2.2 (Lagrangian). The Lagrangian function L : [a,b] ×
RM 	 R associated with (2.3) is

L (x, � ) = f 0(x) +
M�

m=1

� m f m (x). (2.8)

The Lagrange multiplier � m is associated with themth constraint and
the vector � = [ � 1 . . . � M ]T is the Lagrange multiplier vector for (2.3).

The Lagrange dual function h : RM 	 R is the minimum value of
the Lagrangian function over x,

h(� ) = inf
x � [a,b ]

L (x, � ). (2.9)

The idea behind the Lagrangian function is to augment the cost
function f 0(x) with the constraints, such that constraint violations are
penalized with an increased cost. Since the constraints are to be ful-
“lled, the simplest approach would be to let the cost become in“nite
when outside the feasible set. Such hard penalization stands in con-
trast to the soft penalization in L (x, � ), where a constraint violation is
weighted linearly by its corresponding Lagrange multiplier.

Observe that the dual function is the pointwise in“mum of a family
of a�ne functions of � , thus it is concave even if (2.3) is a noncon-
vex problem. On the other hand, it might be di�cult to compute the
in“mum, which is necessary to explicitly derive the dual function.

The dual function provides a bound on the optimal value.

Lemma 2.1. The dual function yields lower bounds on the optimal
value of (2.3). For any � � 0 we have

h(� ) � f 0(x 
 ). (2.10)
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Proof. Based on [37, Subsection 5.1.3], supposēx is a feasible vector
for (2.3) (i.e., f m (x̄) � 0 � m) and observe that

� M
m=1 � m f m (x) � 0, for

any � � 0, since all terms are nonpositive. As a result,

h(� ) = inf
x � [a,b ]

L (x, � ) � L (x̄ , � ) � f 0(x̄ ) (2.11)

for all feasible points x̄ � [a,b], including the optimal solutions.

Lemma 2.1 provides a lower bound on the optimal solution of (2.3)
that holds for any feasible choice of Lagrange multipliers, thus the
closest lower bound is obtained by maximizing the lower bound.

De“nition 2.3 (Lagrange Dual Problem). The Lagrange dual
problem associated with (2.3) is

maximize
�

h(� )

subject to � � 0.
(2.12)

In this context, the original problem in (2.3) is called the primal prob-
lem. The optimal vector of the dual problem is denoted� 
 .

Interestingly, the Lagrange dual problem in (2.12) is always a convex
optimization problem, since the objective to be maximized is concave
and the constraint is convex. This is independent of whether the primal
problem in (2.3) is convex or not. On the other hand, the dual function
is not necessarily di�erentiable.

2.1.3 Optimality Conditions and Strong Duality

There are many important connections between the optimal solution
x 
 of the primal problem and the Lagrange multiplier vector � . Partic-
ularly the Karush…Kuhn…Tucker conditions (KKT conditions)can be
used to identify solution candidates.

De“nition 2.4 (KKT Conditions). Let x 
 be an optimal solution
to the primal problem (2.3). The KKT conditions say that there exist
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a unique Lagrange multiplier vector � 
 such that

� f 0(x 
 ) +
M�

m=1

� 

m � f m (x 
 ) = 0, (2.13)

f m (x 
 ) � 0 m = 1 , . . . ,M, (2.14)

� 

m � 0 m = 1 , . . . ,M, (2.15)

� 

m f m (x 
 ) = 0 m = 1 , . . . ,M. (2.16)

These conditions are known asstationarity , primal feasibility , dual fea-
sibility , and complementary slackness, respectively.

These conditions are generally neither su�cient nor necessary for
the optimal solution. The extra conditions for becoming necessary are
known as constraint quali“cations and typically require some kind of
linear independence among gradients of the active constraints; see [12].
The following simple condition is su�cient under convex constraints.

Lemma 2.2 (Slater•s Constraint Quali“cation). If all constraint
functions f m (x) are convex and it existsx � [a,b] such that f m (x) < 0
for all nona�ne constraints, then the KKT conditions are necessary for
the corresponding optimization problem.

This lemma originates from [249] and we use the formulation in [12,
Chapter 3]. Only the constraints need to be convex to satisfy Slater•s
constraint quali“cation, thus we have the following result.

Example 2.3 (KKT Conditions in Resource Allocation). The
resource allocation problem in (2.1) has convex constraints (see Exam-
ple 2.2). Suppose all beamforming vectors are zero,vk = 0 � k, then
f l (0) < 0 for all power constraints with ql > 0. In addition, all con-
straints with ql = 0 can be reformulated as a�ne equality constraints
Q1/ 2

lk vk = 0. Therefore, the power constraints satisfy Slater•s constraint
quali“cation and the KKT conditions are necessary for all tentative
solutions to (2.1).
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The KKT conditions are broadly related to the property of strong
duality, as will be shown below. Observe that the optimal value of the
dual problem in (2.12) is always smaller than or equal to the value of
the primal problem in (2.3), thus

h(� 
 ) � f 0(x 
 ). (2.17)

Equality would mean that the best bound obtained from the Lagrange
dual function is tight, but equality is generally not achieved.

De“nition 2.5 (Strong Duality). The di�erence f 0(x 
 ) Š h(� 
 ) is
the optimal duality gap and is always nonnegative. The case when the
optimal duality gap is zero is called strong duality.

The dual problem provides the optimal value of the primal problem
under strong duality, giving an alternative way of solving the primal
problem. Strong duality also makes the KKT conditions necessary.

Lemma 2.3 (KKT Conditions under Strong Duality). If strong
duality holds, then the KKT conditions are necessary for the optimal
solution of the corresponding optimization problem.

Proof. Suppose that strong duality holds, let x 
 be a primal optimal
solution, and let � 
 be a dual optimal solution. This means that

f 0(x 
 ) = h(� 
 ) = inf
x � [a,b ]

�

f 0(x) +
M�

m=1

� 

m f m (x)

�

� f 0(x 
 ) +
M�

m=1

� 

m f m (x 
 ) � f 0(x 
 ).

(2.18)

The two inequalities must hold with equality, thus it follows that x 


minimizes L (x, � 
 ) and the gradient is zero at x 
 :

� f 0(x 
 ) +
M�

m=1

� 

m � f m (x 
 ) = 0. (2.19)
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In addition, we have
� M

m=1 � 

m f m (x 
 ) = 0 and since � m � 0 it follows

that

� 

m f m (x 
 ) = 0 m = 1 , . . . ,M. (2.20)

The combination of primal feasibility of x 
 , dual feasibility of � 
 , (2.19),
and (2.20) is exactly the KKT conditions.

For convex problems, KKT conditions and strong duality are par-
ticularly important as these often are both su�cient and necessary.

Lemma 2.4(KKT Conditions for Convex Problems). If the cost
function is convex and Slater•s constraint quali“cation is satis“ed, then
strong duality holds and the KKT conditions are both necessary and
su�cient for the optimal solution.

This lemma provides a simple way to prove strong duality for convex
problems before actually solving the problem „ this is why problems
in this category can be solved relatively e�ciently. Strong duality c an
also be shown to hold for certain nonconvex problems, but it generally
requires numerical computation of the optimal duality gap.

Remark 2.3 (Saddle Point Interpretation). Strong duality can
be interpreted as the existence of a saddle point in the Lagrangian
function, meaning that

sup
� � 0

inf
x � [a,b ]

L (x, � ) = inf
x � [a,b ]

sup
� � 0

L (x, � ). (2.21)

This equivalence holds under certain properties onL (x, � ), for example,
if L is convex in x and lower semi-continuous for every� � 0 and L
is also concave in� and upper semi-continuous for everyx � [a,b]; see
[70, Theorem 1] for some general conditions.

2.2 Convex Optimization for Resource Allocation

In this section, we investigate under which conditions the single-
objective resource allocation problem in (2.1) is linear, convex, or
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quasi-convex. Recall that these classes of problems can be solved e�-
ciently (e.g., using interior-point methods [256, 271]).

The problem (2.1) has convex constraints (see Example 2.2).
Therefore, the classi“cation strongly depends on the cost function
Šf (g1(SINR1), . . . ,gK r (SINRK r )), which unfortunately is a compli-
cated function that seems nonconvex;f (·) depends on the SINRs which
in turn are nonconvex functions of the beamforming vectorsv1, . . . ,vK r .
To pinpoint the main cause of nonconvexity, we represent the SINRs
by auxiliary optimization variables � k such that � k = SINR k . We then
rewrite (2.1) as

minimize
v k ,� k  k

Š f (g1(� 1), . . . ,gK r (� K r ))

subject to |hH
k CkD kvk |2 � � k

�
� 2

k +
�

i �= k

|hH
k CkD i v i |2

�
� k,

K r�

k=1

v H
k Q lk vk � ql � l.

(2.22)

The second row of (2.22) represents the auxiliary SINR constraints
� k � SINRk and the optimal solution always gives equality in these con-
straints. The main complication lies in the SINR constraints, because
Šf (g1(� 1), . . . ,gK r (� K r )) is a convex function with respect to � 1, . . . , � K r

for many f (·) and gk (·) of practical interest.

Example 2.4 (Some Convex and Concave Functions). A con-
tinuous twice di�erentiable function is convex (concave) if the second-
order derivative is nonnegative (nonpositive). For functions of several
variables, this extends to a positive (negative) semi-de“nite Hessian.

Some typical convex functions arex2, ex , and Š log2(x).
Some typical concave functions are log2(x), Šex , and

�
x.

Linear functions, such asx and Šx, are both convex and concave.

Example 2.5 (Concavity of Performance Functions). The infor-
mation rate and the MSE are concave user performance functions (see
Examples 1.6 and 1.7), which is easily seen from the nonpositive second-
order derivatives. The BER for M -QAM with M � { 4,16,64,256}



2.2 Convex Optimization for Resource Allocation 185

also gives concave performance functions [189] (see Example 1.8 for
M = 16). The same holds for the symbol error rate (SER) under arbi-
trary constellations, while the BER and pairwise error probability
(PEP) are only guaranteed to be concave at high SINR; see [163]. Sig-
moid functions can describe certain application-oriented utilities [145]
and are only concave if the SINR exceeds a certain threshold.

All system utility functions in Example 1.11 are concave functions
(e.g., arithmetic/geometric/harmonic mean). 8 In fact, the so-called law
of diminishing marginal utility suggests that all system utility functions
are concave [223], because users generally become less interested in
further improvements as their performance increases. The composite
function f (g1(� 1), . . . ,gK r (� K r )) is concave with respect to � 1, . . . , � K r

whenever both f (·) and gk (·) are concave for allk.

In other words, it is generally the SINR constraints that pre-
vent (2.22) from being a convex problem. These constraints are noncon-
vex because of the multiplication between� k (the SINR value at MSk )
and

�
i �= k |hH

k CkD i v i |2 (the inter-user interference caused to MSk ).
Three approaches to resolve the non-convexity can be envisioned:

(1) Fix the inter-user interference caused to each user;
(2) Fix the SINR value at each user;
(3) Turn the multiplication into addition by change of variables.

None of these approaches can be applied successfully to any resource
allocation problem, but they will help identifying special cases
when (2.1) has a hidden convex structure and thus can be solved e�-
ciently. The division between convex and nonconvex resource allocation
problems is illustrated in Figure 2.2. The special cases with convexity
are interesting and useful on their own, but will also be used as sub-
problems when solving general nonconvex resource allocation problems
in Section 2.3.

8 To exploit the inherent concavity, it might be necessary to re formulate f (g) into an equiva-
lent form; the weighted geometric mean should have exponents greater than one, the max-

imization of the weighted harmonic mean is equivalent to maxi mizing f (g) = Š
� �

k
w k
gk

�
,

and the exponent 1 /p can be dropped for the weighted compromise.
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Fig. 2.2 The division of single-objective resource allocati on between convex and nonconvex
problems. Three types of convex problem formulations are de scribed in this section, based
on “xing the inter-user interference, “xing the SINR at each u ser, or changing variables.

2.2.1 Zero-Forcing and Interference Constraints

This subsection will show that the resource allocation problem becomes
convex if the power of the inter-user interference is knowna pri-
ori . An important special case is so-calledzero-forcing beamforming9

[23, 46, 85, 115, 252, 297, 305], where the beamforming vectors are
selected to cause zero interference to nonintended users. This condition
greatly simpli“es the beamforming design by reducing the search-space
(i.e., beamforming vectors should lie in the nullspace of the co-user
channels), but has also practical importance in cognitive radio (see
Section 4.8) and in high-SNR scenarios where inter-user interference
greatly dominates the noise term in the SINR expression.

Zero-forcing can be relaxed intointerference-constrained beamform-
ing [26, 143, 215, 325] where the inter-user interference at MSk is not
nulled but should be below some threshold �k � 0. This relaxation is

9 Zero-forcing is also known as channel inversion because the goal is to make H tot V tot

a diagonal matrix, where H tot = [ C H
1 h 1 . . . C H

K r
h K r ]H is the joint channel matrix and

V tot = [ D 1v 1 . . . D K r v K r ] is the joint beamforming matrix. Under a total power con-
straint, the diagonalization is achieved by setting V tot = H Š 1

tot . Under general power con-
straints and ”exible power allocation, the channel inverse becomes a generalized inverse
[297] and lacks a simple closed-form expression.
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reasonable because nulling the interference is usually an overreaction;
CSI uncertainty makes it impossible in practice and it is unnecessary
to suppress the interference far below the background noise. The cor-
responding interference constraints are

�

i �= k

|hH
k CkD i v i |2 � � k � k (2.23)

�
�

i �= k

v H
i (D H

i CH
k hkhH

k CkD i )v i � � k � k.

Observe that this constraint has the same form as the power constraints
in (1.4) with Q li = D H

i CH
k hkhH

k CkD i for i �= k, Q lk = 0N , and ql = � k .
This subsection therefore considers the special case when there are
K r interference constraints of the form in (2.23), in addition to the L
regular power constraints:

minimize
v k ,� k  k

Š f (g1(� 1), . . . ,gK r (� K r ))

subject to |hH
k CkD kvk |2 � � k

�
� 2

k +
�

i �= k

|hH
k CkD i v i |2

�
� k,

�

i �= k

v H
i (D H

i CH
k hkhH

k CkD i )v i � � k � k,

K r�

k=1

v H
k Q lk vk � ql � l.

(2.24)

For this problem, the SINR of MSk can be lower-bounded as

SINRk =
|hH

k CkD kvk |2

� 2
k +

�

i �= k
|hH

k CkD i v i |2
�

|hH
k CkD kvk |2

� 2
k + � k

(2.25)

by replacing the actual interference at MSk with the corresponding
interference constraint. Observe that all feasible solutions mustsat-
isfy (2.25) with equality if � k = 0, while this is not necessarily the case
when � k > 0 (i.e., it might be optimal to cause less interference than
allowed). Using the lower bound in (2.25), the resource allocation prob-
lem in (2.24) can be solved as follows.
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Theorem 2.5. For “xed � 1, . . . , � K r � R+ , the optimization problem

minimize
v k ,� k  k

Š f (g1(� 1), . . . ,gK r (� K r ))

subject to |hH
k CkD kvk |2 � � k (� 2

k + � k ) � k,
�

i �= k

v H
i (D H

i CH
k hkhH

k CkD i )v i � � k � k,

K r�

k=1

v H
k Q lk vk � ql � l

(2.26)

is solved by considering the semi-de“nite relaxation withSk = vkv H
k :

minimize
Sk � 0N ,� k  k

Š f (g1(� 1), . . . ,gK r (� K r ))

subject to tr( D H
k CH

k hkhH
k CkD kSk ) � � k (� 2

k + � k ) � k,
�

i �= k

tr( D H
i CH

k hkhH
k CkD i Si ) � � k � k,

K r�

k=1

tr( Q lk Sk ) � ql � l.

(2.27)

The relaxed problem (2.27) is convex iff (g1(� 1), . . . ,gK r (� K r )) is con-
cave and it always has rank-one solutions that also solve (2.26).

Proof. Lemma 1.6 and Theorem 1.8 can be applied to see that the
relaxed problem always has rank-one solutions, as originally shown
in [26, 297]. If an optimization procedure still delivers a high-rank
solution S


k , one can “nd v 

k by maximizing � (hH

k CkD kvk ) under
the interference constraints |hH

i C i D kvk |2 � tr( D H
k CH

i h i hH
i C i D kS


k )
� i �= k and power constraintsv H

k Q lk vk � tr( Q lk S

k ) � l .

This theorem solves (2.24) in polynomial time if the system utility
function is concave (which is often the case, see Example 2.5) and if all
interference constraints are active at the optimal solution. The latter
is always the case when �k = 0 � k, but some interference constraints
can in general be inactive and thereby enable improvements. In such
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a case, �k can be reduced for the inactive constraints and then (2.26)
is solved again. This iterative approach is not guaranteed to solve the
original problem in (2.24), but successively “nds better approximations.
Another approach is to use the achieved solution as a starting-point
for a fairness-pro“le optimization described later in this section (see
Example 2.8). This will provide a weak Pareto optimal point, but not
necessarily the one solving the original problem.

Instead of having one interference constraint �k per user that repre-
sents the aggregate inter-user interference that can be caused to MSk , it
is possible to haveK r Š 1 interference constraints � ik , where each rep-
resents the interference that transmission to a particular co-user MSi

may cause to MSk for i �= k. This leads to interference constraints of the
form |hH

k CkD i v i |2 � � ik for all k, i with i �= k. This formulation gener-
ally provides lower performance, but might be useful as it decouples the
beamforming selection and thus enables simple parametrizations (see
Subsection 3.2.1) and distributed optimization (see Subsection 4.2.1).

Remark 2.4 (Nonzero Solutions). Zero-forcing constraints with
� k = 0 require hH

k CkD i v i = 0 for all i �= k, which either requires that
D i v i is orthogonal to CH

k hk or that D i v i = 0. Since the latter case
would give SINRi = 0, it is desirable to operate in the former case
where each beamforming vector is orthogonal to all co-user channels.
However, this is only possible if there are su�cient degrees-of-freedom
in the system; that is, if the set of co-user channels are not spanningthe
whole space. It is di�cult to give a general condition on the existence
of non-zero solutions, butN j � |C j | � j is necessary under coordinated
beamforming (see Example 1.2) whileN � K r is necessary under global
joint transmission (see Example 1.3). Interference-constrained beam-
forming with � k > 0 does not exhibit such restrictions.

Remark 2.5 (Simplifying the General Problem). This subsec-
tion assumed that the interference constraints (2.23) were part of
the problem to be solved, meaning that our goal is to solve (2.24).
It is also possible to add interference constraints to the general prob-
lem (2.1) for the purpose of simplifying the problem, while striving
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for an optimal solution to the original non-interference-constrained
problem. This heuristic approach is further discussed in Section3.4
and makes sense from a theoretical standpoint, because interference-
constrained beamforming provides the optimal solution to the gen-
eral problem (2.1) if the interference constraints happen to equal the
interference caused by the optimal solution to (2.1) [26, 215, 325].
This feature is utilized in [215] to solve general resource allocation
problems.

2.2.2 Fixed Quality-of-Service Requirements

While the previous subsection considered “xed inter-user interference,
we now consider the second approach for achieving convex problem for-
mulations: “x the SINR value of each user. This special case is partic-
ularly important since it highlights a fundamental connection between
beamforming optimization in the downlink and receive combining in a
related uplink scenario. Furthermore, Subsection 2.2.3 will show that
the “xed SINR values can be relaxed into searching for the optimal
solution along a one-dimensional curve in the performance region.

Consider the case when the system designer knows exactly which
performance each user should be allocated; the goal is to achieve
gk (SINRk ) = r 


k for some given parametersr 

1 � 0, . . . , r 


K r
� 0. The

resource allocation then consists of “nding beamforming vectors that
achieve this operating point, which is known as having “xedquality-of-
service (QoS) requirements[11, 18, 59, 208, 209, 226, 296, 308]. This
can be represented by the system utility function

f (g1, . . . ,gK r ) =

	
0, min{ k: r �

k > 0}
gk
r �

k
� 1,

Š� , otherwise,
(2.28)

which is zero if the QoS requirements are ful“lled. If the QoS require-
ments are unattainable (due to power constraints and/or inter-user
interference), then the system utility is set to Š� which is the con-
ventional way of saying that the feasible set is empty. Plugging (2.28)
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into (2.22) yields the following resource allocation problem

“nd v1 . . . ,vK r (2.29)

subject to |hH
k CkD kvk |2 � gŠ 1

k (r 

k )

�
� 2

k +
�

i �= k

|hH
k CkD i v i |2

�
� k,

K r�

k=1

v H
k Q lk vk � ql � l,

where we utilized that the QoS requirements are infeasible exactly when
f (·) �= 0. Observe that there is no cost function in (2.29), meaning that
we are satis“ed with “nding any feasible solution to (2.29). This type
of problem is known as afeasibility problem and can also be written as
a minimization of a cost function that always equals zero. A preference
of solutions that use little power can be induced by replacing the upper
bound ql of each power constraint with �q l and then minimize over � :

minimize
v k  k, �

� (2.30)

subject to |hH
k CkD kvk |2 � gŠ 1

k (r 

k )

�
� 2

k +
�

i �= k

|hH
k CkD i v i |2

�
� k,

K r�

k=1

v H
k Q lk vk � �q l � l.

This reformulation of (2.29) into a power minimization under QoS
requirements resembles how the problem was originally posed in [71,
208, 282]. The power minimization formulation might be more com-
putationally tractable than (2.29) since the feasible set is larger; we
accept � > 1 which means using more power than is actually available.
In other words, the optimal solution { v 


k } , � 
 to (2.30) only satis“es
the original power constraints in (1.4) if � 
 � 1. The QoS requirements
are infeasible if � 
 > 1. Infeasibility can be handled by either reducing
QoS constraints (e.g., by scaling down the power asv 


k /
�

� 
 ) or by
removing the users that are hardest to serve [253].

The following theorem shows that both (2.29) and (2.30) can be
cast as convex optimization problems.
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Theorem 2.6. The optimization problems (2.29) and (2.30) become
convex problems if the QoS constraints|hH

k CkD kvk |2 � gŠ 1
k (r 


k )( � 2
k +�

i �= k |hH
k CkD i v i |2) are rewritten as

(
(
(
(
(
(
(
(
(

hH
k CkD 1v1

...
hH

k CkD K r vK r

� k

(
(
(
(
(
(
(
(
(

�

$
1 + gŠ 1

k (r 

k )

gŠ 1
k (r 


k )
� (hH

k CkD kvk ) � k,

� (hH
k CkD kvk ) = 0 � k,

(2.31)

where the “rst row contains second-order cone constraints and the sec-
ond row contains linear constraints.

Proof. Since the power constraints are convex (see Example 2.2) and
the cost functions are convex, only the QoS constraints need reformu-
lation. As in [11], we observe that the phase ofvk can be selected in an
arbitrary way. This enables us to assume thathH

k CkD kvk > 0, which
makes the square root of|hH

k CkD kvk |2 well-de“ned. By reshu�ing the
constraints and taking the square root, we achieve (2.31).

In other words, the resource allocation problem with QoS require-
ments can be solved with a computational complexity that only scales
polynomially with the number of antennas N , users K r , and power
constraints L [10, Chapter 6]. The exact complexity depends on cur-
rent systems conditions and the choice of numerical algorithm (e.g.,
interior-point methods [256, 271]). In the special case of coordinated
beamforming with single-antenna transmitters (see Example 1.2), the
problem can even be reduced to a linear power allocation problem by
setting pk = 
 D kvk 
 2

2:

minimize
pk � 0 k, �

� (2.32)

subject to 
 hH
k CkD k 
 2

2pk � gŠ 1
k (r 


k )
�

� 2
k +

�

i �= k


 hH
k CkD i 
 2

2pi

�
� k,

K r�

k=1

tr( D H
k Q lk D k )pk � �q l � l.
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This fundamental type of power allocation problem was formulated
already in the 1960s by Bock and Ebstein [32]. Applications in the area
of cellular communications have also existed for many years; see for
example [52, 137, 190, 304, 314, 316].

Next, we derive the Lagrange dual problem to (2.29) which has a
conceptually important form.

Theorem 2.7. A Lagrange dual problem to (2.29) is10

maximize
� k  k, µ l  l

K r�

k=1

� k Š
L�

l=1

µl (2.33)

subject to µl � 0, � k � 0 � k, l,

max
v̄ k

� k
� 2

k
v̄ H

k D H
k CH

k hkhH
k CkD k v̄k

v̄ H
k


 �

l

µ l
ql

Q lk +
�

i �= k

� i
� 2

i
D H

k CH
i h i hH

i C i D k
�
v̄k

= gŠ 1
k (r 


k ) � k.

If the primal problem is feasible, then strong duality holds and thus
the optimal values coincide as

� K r
k=1 � k Š

� L
l=1 µl = 0.

Proof. The cost function (2.28) is not continuous, but if the primal
problem is feasible then we operate in a range where strong dual-
ity follows from Slater•s constraint quali“cation (see Lemma 2.4). The
Lagrangian function associated with (2.29) is

L ({ vk } , � ,µ )

= 0 +
L�

l=1

µl

�
1
ql

K r�

k=1

v H
k Q lk vk Š 1

�

+
K r�

k=1

� k

 

! 1 +
1
� 2

k

�

i �= k

|hH
k CkD i v i |2 Š

1
� 2

k � k
|hH

k CkD kvk |2

"

#

10 This problem formulation includes terms of the form µ l /q l which requires that ql > 0.
However, for every ql = 0 we can simply replace the corresponding Lagrange multiplie r
µ l with �µ l = µ l ql in (2.33) to make the dual problem well-de“ned.
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=
K r�

k=1

� k Š
L�

l=1

µl +
K r�

k=1

v H
k

�
L�

l=1

µl

ql
Q lk

+
�

i �= k

� i

� 2
i

D H
k CH

i h i hH
i C i D k Š

� k

� 2
k � k

D H
k CH

k hkhH
k CkD k

"

# vk .

(2.34)

This expression is achieved by “rst dividing the power constraints
by ql and the QoS constraints by� 2

k � k (where � k = gŠ 1
k (r 


k )), and then
apply De“nition 2.2. The second equality follows from rewriting the
Lagrangian function in the same way as in [308, Proposition 1]. Mini-
mizing (2.34) with respect to { vk } gives a “nite solution only if

�
L�

l=1

µl

ql
Q lk +

�

i �= k

� i

� 2
i

D H
k CH

i h i hH
i C i D k

Š
� k

� 2
k � k

D H
k CH

k hkhH
k CkD k

�

� 0 � k

(2.35)

and the corresponding minimum is
� K r

k=1 � k Š
� L

l=1 µl (achieved for
vk = 0N × 1). Using [308, Lemma 1], the dual feasibility constraint (2.35)
is equivalent to

� k �
� k

� 2
k

hH
k CkD k

 

!
L�

l=1

µl

ql
Q lk +

�

i �= k

� i

� 2
i

D H
k CH

i h i hH
i C i D k

"

#

•

D H
k CH

k hk

= max
v̄ k

� k
� 2

k
v̄ H

k D H
k CH

k hkhH
k CkD k v̄k

v̄ H
k

� �

l

µ l
ql

Q lk +
�

i �= k

� i
� 2

i
D H

k CH
i h i hH

i C i D k

�
v̄k

, (2.36)

where the equality follows from introducing maximization over an
auxiliary variable v̄k � CN × 1. Its optimal value is given by (2.37) in
Corollary 2.8, because (2.36) is a generalized Rayleigh quotient. The
constraint (2.36) is active at the optimum of the dual problem for all
k (otherwise we can increase some� k and thereby increase the dual
function), thus we have the Lagrange dual problem in (2.33).

This theorem establishes what is known asuplink…downlink duality
[30, 226, 282, 283, 315]; the last line of (2.33) has the form of an uplink
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Fig. 2.3 Block diagram of multi-cell communications for: (a) the downlink; and (b) the
virtual uplink achieved by uplink…downlink duality.

SINR for (reciprocal) transmission from K r single-antenna users toK t

multi-antenna base stations. The uplink scenario that would give these
SINRs is illustrated in Figure 2.3. With the uplink interpretation, the
dual variable � k is the uplink power of the signal from MSk (scaled by
the downlink noise variance), v̄k is the receive combining vector used
for reception of this signal, and µl is an uplink noise variance (scaled
by the downlink power constraints).

Uplink…downlink duality implies that if a set of QoS requirements is
feasible in the downlink, then this set is also feasible in the uplink and
vice versa. Furthermore, there is an important relationship between the
primal and dual variables.

Corollary 2.8. The optimal beamforming vector v 

k to (2.29) is equal

to the optimal dual variable

v̄ 

k =

�
L�

l=1

µl

ql
Q lk +

K r�

i =1

� i

� 2
i

D H
k CH

i h i hH
i C i D k

� •

D H
k hk (2.37)

up to a scaling factor.
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Proof. The stationarity KKT condition (2.13) becomes

0 =
� L
� vk

= 2

�
L�

l=1

µl

ql
Q lk +

�

i �= k

� i

� 2
i

D H
k CH

i h i hH
i C i D k

Š
� k

� 2
k � k

D H
k CH

k hkhH
k CkD k

�

vk .

(2.38)

By de“ning the scalar dk = � k
� 2

k

(1+ � k )
� k

hH
k CkD kvk , using that CkD k =

D k , and multiplying by a Moore…Penrose pseudo-inverse, (2.38)
becomes

vk = dk

�
L�

l=1

µl

ql
Q lk +

K r�

i =1

� i

� 2
i

D H
k CH

i h i hH
i C i D k

� •

D H
k hk (2.39)

and we identify v̄k from (2.37), which solves (2.36).

This corollary shows that the optimal beamforming direction in
the downlink is equivalent to the optimal receive combining in the
uplink „ this is quite intuitive if interpreted as turning the head
toward the audience when speaking and pointing the ears in the same
direction when listening. The proof of this relationship was however an
important breakthrough as it is analytically simpler to select receive
combining vectors than transmit beamforming; the former only a�ects
the intended user while the latter a�ects all the users. Although the
directions are equivalent, the corresponding power allocations are gen-
erally di�erent between the downlink and the dual uplink (but th ere is
a simple matrix transformation, see Subsection 3.2.3).

The duality is particularly strong in the case of a total power
constraint (i.e., L = 1, Q lk = I N � k); the dual uplink then represents
a problem formulation that is practically important for the uplink;
see [30, 226, 283]. The duality can in this case be utilized to design
iterative “xed-point algorithms that quickly “nd the optimal dual
variables and thereby solve both the downlink and uplink problems
[42, 59, 208, 226, 227, 296]. We refer to [227, 228] for further details
on such algorithms and the related topic of general interference func-
tions. Fixed-point algorithms are less useful in the general multi-cell
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case (although an outer optimization procedure can be applied to take
care of general power constraints [59, 308]). In fact, the dual prob-
lem in Theorem 2.7 is more of avirtual multi-cell uplink scenario
than a practically reasonable problem formulation; the uplink noise
in (2.33) is determined by the dual variablesµl and the cost function,� K r

k=1 � k Š
� L

l=1 µl , represents some kind of balance between the uplink
transmit power and the uplink noise power. Nevertheless, the multi-cell
uplink-downlink duality will be exploited in Section 3 to achiev e strong
parametrizations of the optimal beamforming. It will also be an enabler
for truly distributed resource allocation in Section 4.

2.2.3 Quasi-Fixed Quality-of-Service Requirements

The previous subsection showed that resource allocation with “xed
QoS requirements leads to convex optimization problems. This impor-
tant result is utilized in this subsection to achieve e�cient sol utions to
a wider class of resource allocation problems where the QoS require-
ments are ”exible but governed by a single parameter.11 To describe
this structure in general terms, we consider a continuous vector-valued
function r (	 ) = [ r1(	 ) . . . rK r (	 )]T of the scalar parameter	 � R+ . This
function is assumed to be strictly monotonically increasing, thus when-
ever 	 1 > 	 2 � 0 we have r k (	 1) � r k (	 2) � k and there is at least
one strict inequality. Observe that r (	 ) for 	 � [0, 	 upper ] describes a
one-dimensional curve that connects the pointsr (0) and r (	 upper ) and
constantly moves away from the origin; see Figure 2.4. If the curve is
plotted against the performance regionR, we have the following result.

Lemma 2.9. Consider the curve generated by a continuous strictly
monotonically increasing function r : R+ 	 RK r

+ . If r (0) � R and
r (	 upper ) �� R for some	 upper > 0, then the curve intersects the Pareto

11 This subsection considers optimization of the QoS under “xe d power constraints, while
(2.30) in the previous subsection minimizes the transmit pow er under “xed QoS require-
ments. Note that these problems are each other•s inverses; if the optimal QoS achieved
in this subsection is used as QoS requirements in (2.30), the n the two problems will have
the same optimal beamforming. However, the problem formulat ion in this subsection is
often preferable as it always gives a Pareto optimal point, w hile (2.30) requires that a
good operating point is known beforehand „ which is generally not easy to achieve.
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Fig. 2.4 Illustration of a one-dimensional curve generated b y the strictly increasing vector-
valued function r (� ) for � � [0, � upper ]. If r (0) is inside a normal region and r (� upper ) is
outside, then the curve intersects the Pareto boundary only o nce. For the non-normal region
(b) the curve leaves the region and then comes back again.

boundary of R exactly once. This happens at	 � [	 

1 , 	 


2 ] where	 

1 � 	 


2 .
There is always a unique intersection point	 


1 = 	 

2 when the weak and

strong Pareto boundary coincides.

Proof. There will be at least one intersection with the weak Pareto
boundary � + R, due to the continuity of r (	 ) and that R is compact
and normal. Suppose it exists	 


1 < 	 

2 such that r (	 


1 ), r (	 

2 ) � � + R

while r (	 3) �� � + R for some	 3 � [	 

1 , 	 


2 ]. The de“nition of weak Pareto
optimal points then implies that r (	 


1 ) cannot be Pareto optimal either,
which is a contradiction. Consequently, the intersection occursfor all
points in the interval [ 	 


1 , 	 

2 ]. If the weak and strong Pareto boundary

coincides, then intersection point must be unique due to the de“nition
of strong Pareto optimal points.

This lemma proves that a strictly increasing curve that leaves the
performance region intersects the Pareto boundary exactly once. This
might seem trivial, but it requires that the region is normal (as proved
in Lemma 1.10). This property is illustrated in Figure 2.4, where (a) and
(c) are normal regions while (b) is nonnormal and thus some increasing
curves can cross the boundary multiple times. There is only one inter-
section point in most cases, but if the curve enters the boundary at a
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weak Pareto optimal point then it might follow the boundary until a
strong Pareto optimal point is found and then leave it.

Suppose we optimize over	 to “nd the outermost intersection point,
this can be formulated as an optimization problem.

Theorem 2.10. Consider the optimization problem

maximize
v 1 ,...,v K r ,�

	

subject to r k (	 ) = gk (SINRk ) � k,
K r�

k=1

v H
k Q lk vk � ql � l,

	 � [0, 	 upper ]

(2.40)

for a strictly increasing function r (	 ). This problem can be solved by
line-search over the rangeT = [0 , 	 upper ]. For a given 	 candidate � T ,
the convex feasibility problem (2.29) is solved forr 


k = r k (	 candidate ) � k.
If the problem is feasible, all �	 � T with �	 < 	 candidate are removed
from T . Otherwise, all �	 � T with �	 � 	 candidate are removed.

Initial feasibility of (2.40) is checked by (2.29) for r 

k = r k (0). The

optimum is achieved at 	 upper if (2.29) is feasible forr 

k = r k (	 upper ).

Proof. The convex feasibility problem (2.29) checks whether a pointr 


is inside R or not. As r (	 ) is strictly increasing, (2.40) is infeasible
if r (0) �� R and is solved at 	 upper if r (	 upper ) � R . In any other case,
Lemma 2.9 shows thatr (	 ) intersects � + R once and there is a unique
last intersection point r (	 optimal ) for some 	 optimal � [0, 	 upper ]. There-
fore, the rangeT can be divided into two parts: one part is inside of
R and one part is outside. The intersection can be found (to any accu-
racy 
 ) by a line-search that iteratively checks if a point r (	 candidate ) is
inside R by solving (2.29).

Theorem 2.10 shows that optimization along a strictly increasing
curve r (	 ) can be solved by line-search over the range of	 , where the
subproblems are convex feasibility problems. This means that (2.40) is
a quasi-convex problem [37]. Thebisection method is an e�cient line-
search procedure where each iteration consists of checking the feasibility
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Fig. 2.5 Illustration of the bisection method that searches t he range T = [ � lower , � upper ] to
“nd � optimal . The feasibility at the midpoint � candidate is checked in each iteration (i.e., is
� candidate � � optimal ?) and half the interval is removed based on the answer.

at the midpoint of the current range [37], thus the range is halved at
each iteration. The bisection method is illustrated in Figure 2.5 and
the approach is described in Algorithm 1. The number of iterations in
the bisection method scales only logarithmical with the desired width

 of the “nal interval „ precisely � log2(	 upper /
 )� feasibility problems
will be solved. As this variable is bounded by a constant, the computa-
tional complexity is just a constant times the complexity of the convex
feasibility problem (2.29) solved in each iteration. In other words, the
worst-case computationally complexity is polynomial in the number of
antennasN , usersK r , and power constraintsL [10, Chapter 6].

Theorem 2.10 shows how to solve a class of quasi-convex problems.
These are connected to a certain type of resource allocation problems.

Corollary 2.11. Consider a resource allocation problem of the
form (2.1) with f (g) = min k � k (gk ), for some continuous and strictly
increasing functions � k : R+ 	 R+ that satisfy � k (0) = 0. This prob-
lem is solved by Theorem 2.10 forr k (	 ) = � Š 1

k (	 ) and some	 upper that
satis“es r (	 upper ) �� R .
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Algorithm 1 : Optimization Along a Strictly Increasing Curve
Result : Solves optimization problem in (2.40).
Input : Lower bound 	 lower and upper bound 	 upper on 	 ;
Input : Line-search accuracy
 ;
while 	 upper Š 	 lower > 
 do1

Set 	 candidate = � lower + � upper

2 ;2

Set r 

k = r k (	 candidate ) � k;3

if Problem (2.29) is feasible for these{ r 

k } then4

Set { v lower
k } as the solution to (2.29);5

Set 	 lower = 	 candidate ;6

else7

Set 	 upper = 	 candidate ;8

Set 	 lower
“nal = 	 lower and 	 upper

“nal = 	 upper ;9

Output : Final interval [ 	 lower
“nal , 	 upper

“nal ] for 	 ;
Output : Best feasible solution{ v lower

k } ;

Proof. Suppose the optimal value isf (g
 ) = 	 optimal , then there exists
an optimal solution with � k (gk ) = 	 optimal for all k. This is equivalent
to gk = � Š 1

k (	 optimal ), which is the last intersection point between r (	 )
and the weak Pareto boundary ofR.

Resource allocation problems covered by Corollary 2.11 concentrate
on the worst-user performance, but can still take many di�erent forms.
The following examples are illustrated in Figure 2.6.

Example 2.6 ( � -Constraint Optimization). The � -constraint opti-
mization represents maximizing the performance of MSk , while guar-
anteeing that gi � � i for all i [38, 98, 123, 149, 278, 292, 293]. This
problem is solved by Theorem 2.10 usingr k (	 ) = 	 + � k and r i (	 ) = � i .

Example 2.7 (Max-Min Fairness). Max-min fairness optimization
is given by f (g) = min k gk [42, 226, 227, 270, 296]. This problem is










































































































































































































































































































































































