J. Koolen, Design of Simple and Robust Process Plants, Lees' Loss Prevention in the Process Industries, pp.443-508, 2003.
DOI : 10.1002/3527600477

J. Koolen, D. Sinke, and R. Dauwe, Optimization of a total plant design, Computers & Chemical Engineering, vol.23, pp.31-35, 1999.
DOI : 10.1016/S0098-1354(99)80009-X

A. Dubi, Analytic approach & Monte Carlo methods for realistic systems analysis, Mathematics and Computers in Simulation, vol.47, issue.2-5, pp.243-69, 1998.
DOI : 10.1016/S0378-4754(98)00122-0

E. Borgonovo, M. Marseguerra, and E. Zio, A Monte Carlo methodological approach to plant availability modeling with maintenance, aging and obsolescence, Reliability Engineering & System Safety, vol.67, issue.1, pp.61-73, 2000.
DOI : 10.1016/S0951-8320(99)00046-0

S. Fabricius, Modeling and simulation for plant performability assessment with application to maintenance in the process industry, p.202, 2003.

M. Hamada, H. Martz, E. Berg, and A. Koehler, Optimizing the product-based availability of a buffered industrial process. Reliability Engineering and System Safety, pp.1039-1087, 2006.

J. Wijngaard, The Effect of Interstage Buffer Storage on the Output of Two Unreliable Production Units in Series, with Different Production Rates, A I I E Transactions, vol.8, issue.1, pp.42-49, 1979.
DOI : 10.1080/05695557908974399

J. Malathronas, J. Perkins, and R. Smith, The Availability of a System of Two Unreliable Machines Connected by an Intermediate Storage Tank, IIE Transactions, vol.11, issue.1, pp.195-201, 1983.
DOI : 10.1080/05695558308974634

E. Henley and H. Hoshino, Effect of Storage Tanks on Plant Availability, Industrial & Engineering Chemistry Fundamentals, vol.16, issue.4, pp.439-482, 1977.
DOI : 10.1021/i160064a008

N. Limnios and T. Oprisan, Semi-Markov processes and reliability, Boston: Birkhäuser, p.222, 2001.
DOI : 10.1007/978-1-4612-0161-8

R. Howard, Semi-Markov and decision processes, pp.577-1108, 1971.

K. Gaede, Zuverlässigkeit -mathematische Modelle, p.249, 1977.

N. Ravichandran, Stochastic methods in reliability theory, p.p.VIII, 1990.

R. Bernet, Modellierung reparierbarer Systeme durch Markoff-und Semi-regenerative Prozesse. Zürich1992, p.p.IV

S. Osaki and T. N. , Markov renewal processes with some non-regeneration points and their application to reliability theory, Microelectronics and Reliability, vol.1976, pp.633-639

S. Srinivasan, On a class of non-Markovian processes. Madras1962, p.15

A. Alfa and T. Rao, SUPPLEMENTARY VARIABLE TECHNIQUE IN STOCHASTIC MODELS, Probability in the Engineering and Informational Sciences, pp.203-221, 2000.
DOI : 10.1017/S0269964800142068

C. Singh and R. Billinton, System reliability modelling and evaluation, p.248, 1977.

W. Whitt, Continuity of generalized semi-markov processes Mathematics of operations research, pp.494-501, 1980.

S. Haddad and P. Moreaux, Approximate analysis of non markovian stochastic systems with multiple time scale delays. The IEEE Computer Society's 12th, Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS). Volendam2004, pp.23-30

M. Neuts, Matrix-geometric solutions in stochastic models an algorithmic approach, p.332, 1994.

D. Cox, D. Hand, and A. Herzberg, Selected Statistical Papers of Sir David Cox, 2006.