T. Aven, O. Renn, and E. A. Rosa, On the ontological status of the concept of risk, Safety Science, vol.49, issue.8-9, pp.1074-1079, 2011.
DOI : 10.1016/j.ssci.2011.04.015

E. Zio, Computational Methods for Reliability and Risk Analysis, 2009.
DOI : 10.1142/7190

W. Kuo and X. Zhu, Some Recent Advances on Importance Measures in Reliability, IEEE Transactions on Reliability, vol.61, issue.2, pp.344-360, 2012.
DOI : 10.1109/TR.2012.2194196

Q. Yao, X. Zhu, and W. Kuo, A Birnbaum-importance based genetic local search algorithm for component assignment problems, Annals of Operations Research, vol.37, issue.1, 1223.
DOI : 10.1007/s10479-012-1223-1

X. Zhu and W. Kuo, Importance measures in reliability and mathematical programming, Annals of Operations Research, vol.37, issue.1, 1127.
DOI : 10.1007/s10479-012-1127-0

W. Kuo and X. Zhu, Relations and Generalizations of Importance Measures in Reliability, IEEE Transactions on Reliability, vol.61, issue.3, pp.659-674, 2012.
DOI : 10.1109/TR.2012.2208302

W. Kuo and X. Zhu, Importance Measures in Reliability, Risk, and Optimization: Principles and Applications, 2012.
DOI : 10.1002/9781118314593

Z. W. Birnbaum, On the importance of different components in a multi component system. Multivariate analysis II, 1969.

R. W. Youngblood, Risk significance and safety significance, Reliability Engineering & System Safety, vol.73, issue.2, pp.121-136, 2001.
DOI : 10.1016/S0951-8320(01)00056-4

S. Si, H. Dui, Z. Cai, and S. Sun, The Integrated Importance Measure of Multi-State Coherent Systems for Maintenance Processes, IEEE Transactions on Reliability, vol.61, issue.2, pp.266-273, 2012.
DOI : 10.1109/TR.2012.2192017

W. E. Vesely, M. Belhadj, and J. T. Rezos, PRA importance measures for maintenance prioritization applications, Reliability Engineering & System Safety, vol.43, issue.3, pp.307-318, 1994.
DOI : 10.1016/0951-8320(94)90035-3

S. Martorell, V. Serradell, and G. Verdù, Safety-related equipment prioritization for reliability centered maintenance purposes based on a plant specific level 1 PSA, Reliability Engineering & System Safety, vol.52, issue.1, pp.35-44, 1996.
DOI : 10.1016/0951-8320(95)00122-0

M. C. Cheok, G. W. Parry, and R. R. Sherry, Use of importance measures in risk-informed regulatory applications, Reliability Engineering & System Safety, vol.60, issue.3, pp.213-226, 1998.
DOI : 10.1016/S0951-8320(97)00144-0

H. Peng, D. W. Coit, and Q. Feng, Component Reliability Criticality or Importance Measures for Systems With Degrading Components, IEEE Transactions on Reliability, vol.61, issue.1, pp.4-12, 2012.
DOI : 10.1109/TR.2011.2182256

S. Beeson and J. D. Andrews, Importance measures for non-coherent-system analysis, IEEE Transactions on Reliability, vol.52, issue.3, pp.301-310, 2003.
DOI : 10.1109/TR.2003.816397

Q. Yao, X. Zhu, and W. Kuo, Heuristics for component assignment problems based on the Birnbaum importance, IIE Transactions, vol.13, issue.9, pp.1-14, 2011.
DOI : 10.1002/1520-6750(199004)37:2<203::AID-NAV3220370203>3.0.CO;2-X

G. E. Apostolakis, The concept of probability in safety assessments of technological systems, Science, vol.250, issue.4986, pp.1359-1364, 1990.
DOI : 10.1126/science.2255906

M. Modarres, Risk Analysis in Engineering: Probabilistic Techniques, Tools and Trends, 2006.

P. Baraldi, E. Zio, and M. Compare, A method for ranking components importance in presence of epistemic uncertainties, Journal of Loss Prevention in the Process Industries, pp.582-592, 2009.
DOI : 10.1016/j.jlp.2009.02.013

T. Aven and T. E. Nøkland, On the use of uncertainty importance measures in reliability and risk analysis, Reliability Engineering & System Safety, vol.95, issue.2, pp.127-133, 2010.
DOI : 10.1016/j.ress.2009.09.002

E. Borgonovo, Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches, Risk Analysis, vol.2, issue.1, pp.1349-61, 2006.
DOI : 10.1016/S0951-8320(02)00229-6

E. Borgonovo, G. E. Apostolakis, S. Tarantola, and A. Saltelli, Comparison of global sensitivity analysis techniques and importance measures in PSA, Reliability Engineering & System Safety, vol.79, issue.2, pp.175-186, 2003.
DOI : 10.1016/S0951-8320(02)00228-4

C. A. Hoare, Quicksort, The Computer Journal, vol.5, issue.1, pp.10-15, 1962.
DOI : 10.1093/comjnl/5.1.10

D. Dubois, H. Prade, and P. Smets, Representing partial ignorance, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.26, issue.3, pp.361-377, 1996.
DOI : 10.1109/3468.487961

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Baudrit, D. Dubois, and D. Guyonnet, Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment, IEEE Transactions on Fuzzy Systems, vol.14, issue.5, pp.593-608, 2006.
DOI : 10.1109/TFUZZ.2006.876720

D. Dubois, L. Foulloy, G. Mauris, and H. Prade, Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities, Reliable Computing, vol.10, issue.4, pp.273-297, 2004.
DOI : 10.1023/B:REOM.0000032115.22510.b5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. C. Helton, J. D. Johnson, and W. L. Oberkampf, An exploration of alternative approaches to the representation of uncertainty in model predictions, Reliability Engineering & System Safety, vol.85, issue.1-3, pp.39-71, 2004.
DOI : 10.1016/j.ress.2004.03.025

G. Shafer, A mathematical theory of evidence, 1976.

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

C. Baudrit, D. Dubois, and N. Perrot, Representing parametric probabilistic models tainted with imprecision, Fuzzy Sets and Systems, vol.159, issue.15, pp.1913-1928, 2008.
DOI : 10.1016/j.fss.2008.02.013

C. Baudrit and D. Dubois, Comparing methods for joint objective and subjective uncertainty propagation with an example in a risk assessment, 4th International Symposium on Imprecise Probabilities and Their Applications, 2005.

D. Dubois, Possibility theory and statistical reasoning, Computational Statistics & Data Analysis, vol.51, issue.1, pp.47-69, 2006.
DOI : 10.1016/j.csda.2006.04.015

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Dubois and H. Prade, Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification, Annals o Mathematics in Artificial Intelligence, vol.32, issue.1-4, pp.35-66, 2001.
DOI : 10.1007/3-540-45493-4_26

D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty, 1988.

J. S. Wu, G. E. Apostolakis, and D. Okrent, Uncertainties in system analysis: Probabilistic versus nonprobabilistic theories, Reliability Engineering & System Safety, vol.30, issue.1-3, pp.163-181, 1990.
DOI : 10.1016/0951-8320(90)90093-3

P. Baraldi, M. Compare, G. Rossetti, A. Despujols, and E. Zio, A modelling framework to assess maintenance policy performance in electrical production plants, Maintenance Modelling and Applications, ESREDA-ESRA Project Group Report. Andrews, Berenguer and Jackson Eds, pp.263-282, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658747

P. Baraldi, A. Balestrero, M. Compare, L. Benetrix, A. Despujols et al., A Modeling Framework for Maintenance Optimization of Electrical Components Based on Fuzzy Logic and Effective Age, Quality and Reliability Engineering International, vol.20, issue.2, p.2012
DOI : 10.1002/qre.1388

URL : https://hal.archives-ouvertes.fr/hal-00777696

P. Baraldi, M. Compare, and E. Zio, Representation and propagation of the uncertainties in expert information on the parameters of degradation models for maintenance policy assessment

K. Sentz and S. Ferson, Probabilistic bounding analysis in the Quantification of Margins and Uncertainties, Reliability Engineering & System Safety, vol.96, issue.9, pp.1126-1136, 2011.
DOI : 10.1016/j.ress.2011.02.014

P. Baraldi, N. Pedroni, E. Zio, E. Ferrario, A. Pasanisi et al., Monte Carlo and fuzzy interval propagation of hybrid uncertainties on a risk model for the design of a flood protection dike, European Safety and Reliability Conference 2011, pp.18-22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658077

C. Baudrit and D. Dubois, Practical representations of incomplete probabilistic knowledge, Computational Statistics & Data Analysis, vol.51, issue.1, pp.86-108, 2006.
DOI : 10.1016/j.csda.2006.02.009

P. Baraldi and E. Zio, A Comparison Between Probabilistic and Dempster-Shafer Theory Approaches to Model Uncertainty Analysis in the Performance Assessment of Radioactive Waste Repositories, Risk Analysis, vol.18, issue.1, pp.1139-1156, 2010.
DOI : 10.1111/j.1539-6924.2010.01416.x

URL : https://hal.archives-ouvertes.fr/hal-00610490

E. Zio, An introduction to the basics of reliability and risk analysis, 2006.
DOI : 10.1142/6442

G. Bojadziev and M. Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications Advances in Fuzzy Systems ? Applications and Theory, 1995.

D. E. Knuth, The Art of Computer Programming, 1998.