
HAL Id: hal-00927779
https://centralesupelec.hal.science/hal-00927779

Submitted on 13 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexicells and SDR4ALL - A cognitive radio test bed
Sylvain Azarian, Mérouane Debbah

To cite this version:
Sylvain Azarian, Mérouane Debbah. Flexicells and SDR4ALL - A cognitive radio test bed. WoSSPA
2013, May 2013, Mazafran, Algeria. pp.460-464, �10.1109/WoSSPA.2013.6602407�. �hal-00927779�

https://centralesupelec.hal.science/hal-00927779
https://hal.archives-ouvertes.fr

FLEXICELLS AND SDR4ALL– A COGNITIVE RADIO TEST BED

Sylvain AZARIAN – Mérouane DEBBAH

Alcatel-Lucent Chair on Flexible Radio, Supélec, France

{sylvain.azarian, merouane.debbah}@supelec.fr

ABSTRACT

Advanced cognitive radio algorithms involve different

technical fields like signal processing, wired network

communication, computing, etc. Prototyping such systems

raise new issues when one wants to find ‘off the shelf’

bricks, ready for experiments: the integration step is time

consuming, is not free of risks of non-compatibility and

most of the time does not fall in the scope of a PhD work.

For these reasons, many research groups have invested

in building a testing platform for their cognitive radio

activities. Because the Alcatel Lucent Chair on Flexible

Radio is engaged in research covering a wide field of

topics, the need for a fully customizable experimental test

bed rose and was initiated with SDR4ALL on the radio

side, and continued with the FlexiCells project for the

infrastructure. This paper presents the platform we are

designing at Supélec.

1. INTRODUCTION

Simulation is usually the final step in telecommunication

research. The main issue comes when the simulation must

be done at the system level: mathematical models can be

set for sub-problems but it can become quickly

challenging when a full cognitive network has to be

evaluated, when the behavioural simulation must be

mixed with signal processing simulation. Typical tools

like Matlab are not at their best when different levels of

the communication stacks must be simulated. At that

point, one often wants to setup a simulator, also known as

a "simulation platform". Several testing environments

have been developed by academic research teams

worldwide, targeting different classes of applications (see

[1][2] for example). One key feature of any simulation

platform is its capability to be used by researchers and

PhD students with limited requirement of technical staff

manpower, but doing a universal test bed, customizable at

all levels is still often a dream, mainly because of cost

constraints, or because of some key sub-blocks involved

cannot be easily opened or shared with other groups,

often because of Intellectual Property issues.

Because of the wide-scope research done by our group,

none of the existing platforms could be used "as is". The

FlexiCells project is an initiative to create an evaluation

platform for cognitive radio experiments. In this project,

the following items are under study:

• Spectrum sensing / allocation,

• Interference management,

• Radio device reconfiguration,

• Backbone packet scheduling.

These topics are part of the “cognitive / flexible radio”

research works performed in the Alcatel-Lucent Chair at

Supélec [1]. FlexiCells can be considered as a realistic

test environment for cognitive and flexible radio based on

Software Defined Radio devices. This type of architecture

replaces the protocol/modulation specific hardware by

digital signal processing, hence opening ‘on the fly’

change of radio systems by just reloading appropriate

signal processing code [2]. To avoid long design cycles,

this system has been developed to be ‘research friendly’

and tries to hide all low-level details (hardware and

software) behind high level languages and functions. For

example, all the hardware setup can be made from Matlab

[3]. Of course, for power demanding applications, a

specific API (Application Programming Interface) has

been developed to ease integration in “low level” custom-

made applications. The system we designed aims to

recreate in a limited environment realistic operating

conditions. In this scheme we target the following

structure:

• A primary (or legacy) system of communication

made of one “base station” and “mobile nodes”.

Typically we simulate here the case of a phone

base station connected to several mobile users.

• A set of cognitive (secondary) users. These users

will initiate point to point communications, first

by finding the most appropriate frequency and

modulation schemes (this is the

sensing/allocation part), and then estimate the

best scenario to limit interferences with the

primary system. This sensing step can be done

locally (embedded algorithm) or remotely

(spectrum broker). To operate, the mobile

system may not have the relevant signal

processing code aboard, and may download and

upgrade its firmware, this is the reconfiguration

part.

• A local area network, to interconnect some of the

nodes, as the “backbone”. This network is here

to recreate and test the wired infrastructure used

in mobile telecommunications, to experiment

routing and scheduling algorithms.

Such scenarios have been studied in depth in the team, in

the VFDM context [4][5] or in the "small cell" context

[6]. FlexiCells is an attempt to build an experimental

platform to benchmark these works. By itself the platform

can be seen as a "container" for studied algorithm and

does not implement any of them directly, but provides

placeholders for inserting in the simulator different types

of behaviours and benchmark them.

A set of metrics are created to evaluate the performances

of the tested algorithms. For example, the interference

created by the “cognitive network” communications on

the primary users is one of the key indicators for the

cognitive system performance. These indicators are

logged in a database for comparison and benchmarking.

Figure 1 illustrates the Flexicell simulation environment.

�����������	��
�����

����������
��
�����

�
�
�
�����
�

���	�����������	��
������
�

Figure 1 - The FlexiCell testing platform

This system requires specific hardware and of course

specific software. Our approach and achievements will be

described in more details in the following sections.

2. HARDWARE DESCRIPTION

We are dealing here with different types of requirements,

and the challenge is to manage a base-station with

multiple user capabilities, base station for single user,

spectrum sensing nodes, and mobile user nodes.

2.1 Base station and RF monitoring

For the base station emulation, a MIMO system has been

selected, using a multiple channel system. One Pentek

78620 multichannel board [7] is dedicated to implement a

MIMO 2x2 system and one synchronization channel. This

board comes with 2 ADC with 200 Mega samples /

second and 3 DAC channels with 800 Mega samples

/second.

2.2 Mobile terminals and sensing nodes

The mobile users system relies on a SDR4ALL board [8]

and a small computer, running the code to emulate a

primary or secondary user. Briefly, the SDR4ALL

hardware can be described as a simple direct-conversion

transceiver, using the USB bus to transfer baseband

samples to and from a host PC, hence limiting the

achievable bandwidth to some 8 MHz, because of USB2

performances. The SDR4All hardware is made of:

- One main board containing the USB Bridge +

logic (FPGA),

- One or two daughter boards for radio

transmission (SISO or MIMOx2 communication

mode)

The embedded processor processes the USB request and

forwards the relevant commands to internal peripherals.

This task is managed by the firmware. Initially developed

as a standalone radio tool for research and education,

SDR4ALL comes with a lot of applications [, some of

them have been rewritten to open SDR4ALL integration

in the FlexiCells framework.

The SDR4ALL boards

The sensing nodes are also using the SDR4ALL modules.

In this case, a specific firmware is placed in the onboard

FPGA to allow wider-band sampling in burst mode. In

this case, an embedded FIFO is filled at maximum

sampling rate and transferred to the host PC for spectrum

monitoring.

3. SOFTWARE AND NETWORK

INFRASTRUCTURE

Three typical scenarios are used in FlexiCells:

• Local baseband processing: the SDR4ALL board

samples are processed locally, by the local

computer. In this scheme, the digital signal

processing code is running on the local PC, and

only monitoring data is transferred on the

backhaul network.

• Remote baseband processing: for algorithm

tuning or interference estimation, any node can

stream received RF samples to a remote

processing node on the network, to a custom or

Matlab application.

• Benchmarking: in many situations, we want to

compare the achievements of two different

algorithms, running simultaneously on the same

data. For example, free spectrum estimation can

be done using different methods. It is then useful

to run different techniques simultaneously, using

the same dataflow from the same sensor nodes

and compare the results.

A study of existing network RF streaming systems was

conducted and the VITA 49-VRT [9] studied in depth.

The VRT protocol describes the network packet structure

to transfer samples or commands between equipments. A

simplified version of the network packets and protocol

has been implemented in the system, but keeping the VRT

philosophy.

Redundancy and distributed processing: When more

computing power is required, it is often easier to add a

computer somewhere on the network and duplicate the

data stream instead of reorganizing a running system.

This opens loading and off-loading of complex

processing without stopping a running monitoring system.

Distributing processing also adds more reliability to the

system where the same algorithms can be running over

multiple processing nodes.

The resulting architecture is a “Software Defined Radio in

the Cloud” system where key processing nodes can be

distributed over a private or public network. This is

described in figure 2.

Figure 2 - Software defined radio in the Cloud

The following sections describe the different types of

nodes introduced in figure 2.

3.1. Radio nodes (sensors)

A radio node is a software defined radio receiver (using

SDR4ALL) controlled by a local processing unit,

typically a computer running a Linux operating system. It

is connected to the TCP/IP network, using a wired or

wireless interface. A radio node can be turned on or off at

any time. On startup it opens a TCP/IP connection to a

predefined server node to declare its availability.

Commands and samples can be transmitted to the relaying

node in paquet frames over the network using a VRT-like

scheme. One radio node can be connected to more than

one relaying node at the same time.

A typical radio node is organized as follows (see figure

3): Control messages are sent to the SDR4ALL device to

set the working frequency, sampling rate, and other

settings like RF gain, filters etc. This interface is managed

through one “hardware abstraction layer” (HAL) specific

to the radio device to ease integration of different types of

hardware. A local GPS receiver is also connected to the

HAL, giving GPS time, position estimation and 1PPS (1

pulse per second) synchronization.

Figure 3 - Typical radio node in FlexiCells

All the network connections are managed through a

“network engine” taking care of the connection to the

servers: message building and transmitting, message

receiving and decoding. The network engine is also

organized in two main families of code: one API common

to all the connected applications and one “receiver

specific” code (Application code) – see figure 4.

Figure 4 - Client nodes software architecture

Network packets are processed and then stored in priority

queues. Depending on message type, some specific events

are triggered. For example, when the remote server asks

for streaming start or stop, a specific function is called

inside the application. This avoids going through all the

packets and shortens the latency time of the system.

3.2. Server nodes

These nodes have to

1. Handle remote nodes connection,

2. Handle remote radio streams publishing and

synchronization,

3. Manage client node subscription to streams,

4. Dispatch commands,

5. Dispatch information messages.

The heart of the server is organized around a packet

scheduler, analysing message queues (priority queues)

incoming from remote nodes and dispatching messages

(see figure 5).

Figure 5 - Server architecture

A typical dispatch case is illustrated in figure 6 where

client node A wants to start a remote radio device:

1. At time (1) it sends a start message to server.

2. This message is forwarded (2) to the radio node.

3. When the node has started, a feedback message

(“status information change message”, (3) on

figure) is sent to the server.

All nodes who subscribed to radio node receive the status

update (messages (4) on figure).

Figure 6 - Dispatching messages across the network

The very same situation happens when one client node

wants to change for example the working frequency. The

request follows the same path, and acknowledged

according to the same scheme.

This scheme avoids client to radio node direct connection

but adds some latency for message re-dispatching, but it

opens stream sharing between multiple clients, hence

permitting multiple use of same real-time RF data by

different applications.

3.3. Client nodes

Based on core structure presented here, different

applications have been written to test the system:

• Command line application to remotely start / stop

streams;

• Matlab Client;

• SDR# client : SDR# is an open-source SDR

application providing simple demodulation and

waterfall display, initially developed to decode AM,

FM and SSB audio on HF bands;

• Custom GUI to control the network nodes and

display their location on a map (using Open Street

Map cartographic public servers).

4. CURRENT STATUS AND FUTURE WORKS:

DISTRIBUTED SYNCHRONIZATION

Platform integration is still in progress and first simple

point to point transmissions are now working, controlled

remotely from Matlab or dedicated C Api. Next big step

is the distribution of synchronization over nodes. In a

typical mobile network, the base stations use a GPS

synchronized clock and all the time-critical signals are

derived from it. In our indoor scenario this is not very

realistic.

The issue comes when we want a time-base to

synchronize the primary and secondary user

communication. One solution under evaluation is to use a

specific signal transmitted by the primary base station

(see §1.1), working as a “synchronization beacon”. A

matched-filter is coded in the SDR4ALL FPGA and waits

for a predefined code. Once this code is received, the

samples are delivered (or transmitted) after a predefined

time delay.

���������

	
�� 	
�

�
��
�
�
��
�
	

�
�
�
�
	

�����������

��

��	��
�	������	

���	��

��	�����

�����
�����

��
�

���
�����	

��	��� �

�	��
���

��

�������

��	��������	�

�	����

�����
�����	����

�����	���

�������������

���
�����

�� ��

Figure 7- Remote synchronization

The Walsh - Hadamard codes are good candidates as

it is easy to generate a set of orthogonal codes with

limited cross-correlation, this solution is currently under

evaluation.

We also need to decide the different algorithms we

will implement for the spectrum management. One first

approach will be to sample continuously the whole ISM

band and keep the data and compare offline with other

possible methods to benchmark them.

5. CONCLUSION

The FlexiCells platform still requires a important amount

of work to be fully running, several issues in the

hardware, embedded or infrastructure layers have to be

fixed to reach our initial goals. We hope to have soon a

completely "research friendly" reconfigurable platform,

opening promising fields of experiments.

6. ACKNOWLEDGMENTS

We would like to thank the Digiteo Foundation for its

funding, and the french company SOVENTIS for

providing us with some key infrastructure tools.

REFERENCES

[1] The FIT experimental facility (http://fit-

equipex.fr/testbeds/cognitive-radio).

[2] Cores - A cognitive Radio Testbed by the UCLA

(http://cores.ee.ucla.edu/index.php?title=CR_Testbeds)

[3] The Alcatel-Lucent chair on flexible radio :

http://www.flexible-radio.com/

[4] J. Mitola III and GQ Maguire Jr. "Cognitive radio:

making software radios more personal". IEEE personal

communications, 6(4):13–18, 1999.

[5] Cardoso, L. S., S. Azarian, P. Jallon, and M.

Debbah, "SDR4all: Software Defined Radio Made Easy", 6th

Karlsruhe Workshop on Software Radio, Karlsruhe, Germany,

2010.

[6] Maso, M., L. S. Cardoso, E. Ba�tu�, N. Linh-Trung, M.

Debbah, and O. Ozdemir, "On the practical implementation of

VFDM-based opportunistic systems: issues and

challenges", REV Journal on Electronics and Communications,

vol. 2, no. 1-2, 2012.

[7] Maso, M., L. S. Cardoso, E. Ba�tu�, M. Debbah, and O.

Ozdemir, "VFDM: a prototype of cognitive transceiver",

International Workshop on Communication Systems (IWCS),

Hanoi, Vietnam, 2011.

[8] Mawlawi, B., E. Ba�tu�, C. Nerguizian, S. Azarian, and

M. Debbah, "Non-Invasive Green Small Cell Network", 46th

Annual Asilomar Conference on Signals, Systems, and

Computers, Pacific Grove, California, USA, 2012.

[9] Pentek http://www.pentek.com/

[10] SDR4ALL : http://www.flexible-radio.com/sdr4all

[11] The VITA-49 VRT "VITA Radio Transport protocol" -

The VITA Standards Organization

