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Abstract In the context of multi-user precoding, the
idea behind vector perturbation (VP) lies in adding an

integer vector to the data vector such that the over-
all transmit power is reduced, where the performance
at the users end is consequently improved. In the lit-

erature, several techniques have been proposed to find

a quasi-optimum perturbing vector, where this process

was represented as an integer lattice search problem.

In this paper, we propose a parallel QRD-M encoder

(PQRDME) that, besides attaining a quasi-optimum
diversity order, leads to tremendous reduction in the
latency of the vector perturbation stage. Based on the

set grouping, the proposed encoder transforms the full

tree-search of the conventional QRDME into partial

trees that can be pipelined to increase the encoding

throughput. We evaluate the proposed algorithm un-

der several scenarios with both perfect channel state

information (PCSI) and imperfect CSI (ICSI) at the
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transmitter side, where simulation results show robust

performance when compared to the optimum encoder.

Keywords MU-MIMO precoding · vector perturba-

tion · QRD-M encoder · sphere encoder

1 Introduction

Compared with the single-user multiple-input multiple-

output (SU-MIMO) systems [18], multi-user MIMO (MU-

MIMO) systems can achieve tremendous capacity gains

without requiring additional spatial or spectral resources [22].

To this end, downlink precoding techniques based on

the information-theoretic concept of dirty paper coding

(DPC), first proposed by Costa in [5], can be used. Con-

sidering the knowledge of the data vector and the chan-

nel state information (CSI) at the base station (BS)

side, inter-user interference (IUI) can be canceled so

that each user only receives its designated data.

Several MU-MIMO precoding techniques were pro-

posed in the literature in order to achieve the near-
capacity. Among these techniques the linear precoding

which consists of pre-processing the data vector using
a criterion-based filtering matrix, which is constructed
using either the zero-forcing (ZF) or the minimum-mean

square error (MMSE) criterion [8] (a.k.a. channel inver-

sion and regularized inversion, respectively.) Although

the MMSE precoding alleviates the noise amplification

problem appearing in the case of ZF precoding—especially

when the channel matrix is ill-conditioned, it still per-
forms much worse than the optimum brute-force en-
coder in terms of bit-error rate (BER) performance and

diversity order.

To alleviate the noise amplification, lattice-base re-

duction techniques iteratively find a better-conditioned
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base, i.e., a channel matrix with shorter and more or-

thogonal columns. Therefore, linear precoding is suffi-

cient to achieve quasi-optimum performance due to the

good conditionality of the reduced basis of the channel

matrix. Lenstra-Lenstra-Lovasz (LLL) algorithm [11]

and Seysen’s algorithm (SA) [19] are extensively used to

obtain better bases, where LLL algorithm is shown to

require fewer computations than SA for an almost neg-
ligible degradation in the BER performance [1]. How-
ever, drawbacks of the lattice-reduction-based precod-

ing techniques are in their iterative nature that slows

down the encoding process, and their high worst-case

computational complexity, which is exponential in the

case of ill-conditioned channel matrix. Theoretically,

Jalden et al. have shown in [9] that the number of itera-

tions of the LLL algorithm is infinite when the channel

matrix has a very high condition number.

To further improve the performance of MU-MIMO

precoding without requiring lattice-basis reduction, the

Tomlinson-Harashima precoding (THP) reduces the re-

quired transmit power via employing a non-linear mod-

ulus operation [6,21]. A linear version of this technique

consists of two stages [12]: (i) a vector perturbation

(VP) stage, where the data vector is perturbed by an
integer-valued vector such that the required transmit
power is reduced, and (ii) a precoding stage where the

perturbed vector is linearly precoded using any of the

aforementioned linear techniques. Despite of the appar-

ent improvement by the THP, its vector perturbation

stage is equivalent to the successive interference cancel-

lation used in the MIMO detection literature, which is
not optimum. As such, further reduction in the required
transmit power can be achieved once the VP stage is

optimized.

The VP problem was solved in [3,7] using the sphere
encoder (SE) which suffers from sequential search na-

ture and high worst-case complexity. In [23], a QRDM
encoder (QRDME) was proposed to fix the computa-
tional complexity of the SE with quasi-optimum per-

formance. Recently, we proposed a fixed-complexity SE

(FSE) that overcomes both shortcomings of the SE,

while lagging the performance of the optimum encoder [15].

Contributions: In this paper, we propose a parallel

QRDME (PQRDME) that achieves a tradeoff between

the attained performance and the precoding through-

put. Based on the set grouping, the full vector per-

turbation (i.e., tree-search phase) is divided into par-

tial vector perturbation (PVP) problems that can be

processed in parallel, leading to a substantial speed-up

of the precoding stage. A trade-off between precoding

throughput and system performance is achieved by set-

ting the number of PVPs; a high number of PVPs indi-

cates higher gain in the precoding throughput but also

leads to sacrificed performance, and vice-versa. In [16],

the proposed encoder is evaluated under the assumption
of single-stream transmission where the channel state
is considered to be perfectly known at the transmitter.
In this paper, we further consider the case of multi-

stream communications, where users can be equipped

with more than a single receive antenna. To this end,

block diagonalization (BD) [4] is used as a pre-processing

stage that eliminates the IUI. Furthermore, we consider

imperfect knowledge of the CSI at the transmitter side

[2]. Therefore, we employ two types of channel quanti-

zation: (i) the nonuniform Lloyd-Max quantizer which

is used to independently quantize the real and imagi-

nary parts of each channel coefficient, and (ii) the phase

of the channel is quantized using a uniform quantizer,

where the channel amplitude is considered to be known

at the transmitter. This assumption is motivated by the

fact that in future-generation communication systems,

several uplink control signals, such as channel quality

indicator (CQI) [10], indicating the amplitude or relia-

bility of the channel are already assumed to be fed back

to the BS from users. Finally, we evaluate the perfor-
mance of the proposed encoder under several scenarios
and compare it with the conventional MU-MIMO pre-
coding techniques. Finally, we bring more insight into

the selection of candidates set size from which the ele-

ments of the perturbing vector are drawn.

Organization: This paper is organized as follows. In

Section 2 we introduce the system model and statement

of problem. In Section 3 we briefly describe the conven-

tional VP techniques and outline our motivations. In

Section 4, we introduce the proposed PQRDME tech-

niques and outline its merits. In Section 5, we show

simulation results and finally draw conclusions in Sec-

tion 6.

2 System Model and Statement of Problem

In this paper, we consider a downlink system in which

a single BS equipped with nT transmit antennas simul-

taneously communicates with nU users each equipped

with nR receive antennas. In this paper, we consider the

minimum number of required transmit antennas, that

is, nT = (nU ×nR). Also, let the system be transformed

into the K-dimensional real Euclidean space with N =
(2 × nT ), then under the assumption of narrow-band

flat-fading, the downlink MU-MIMO channel is given

by:

H =
[

HT
1 HT

2 · · · HT
nU

]T

, (1)
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Fig. 1 Structure of the MU-MIMO precoding system with vector perturbation and imperfect CSI at the transmitter.

where Hi ∈ R
(2×nR)×N is the channel coupling the nT

transmit antennas to the nR receive antennas of user i,
and (·)T denotes the matrix transpose.

Having both the data vector s ∈ R
N and the channel

matrix H at the BS, linear precoding techniques treat

the data vector using a filtering matrix to obtain the
following precoded vector:

x = P
s√
γ
= (HTH+ αIN )−1HT s√

γ
, (2)

where α, the regularization coefficient, is set to zero in

the case of ZF precoding and to a value proportional

to the noise variance in the case of MMSE precoding.

Also, the scaling factor γ is present to fix the expected

transmit power to a predefined value, which is set to

1. Therefore, the receive signal-to-noise ratio (SNR) at

each receive antenna is given by E(s∗s)/γσ2
n. Since γ is

inversely proportional to the conditionality of channel

matrix, the receive SNR is degraded when the channel

matrix is ill-conditioned.

As an alternative to the linear precoding techniques,

THP reduces the required transmit power using a non-

linear modulo operation that limits the power of the

precoded symbols. Conventionally, symbols are precoded

successively, where each precoded symbol, e.g., si, is
rounded into a predefined range. In [12], a linearized

version of the THP was introduced where the algorithm

is split into two successive stages; namely, the VP stage

and the linear precoding stage as shown in Fig. 1. The

VP stage of the THP algorithm is given as:

s̃ = s+ τt, (3)

where t is an N -dimensional vector with integer ele-

ments. In [7], τ is defined as an integer given by:

τ = 2 (|cmax|+∆/2) , (4)

where |cmax| is the absolute value of the symbol with

the largest magnitude, and ∆ is the spacing between

any two neighbor symbols. Now, let the precoder fully

equalizes for the channel effect, then the data symbols

can be recovered at the receivers using a simple modulo

operation that reduces the range of the received signal y

to [-K, K) with K as the square root of the cardinality

of the modulation set.

Despite the improvement achieved by the THP com-

pared to the linear precoders, its VP stage is equivalent

to the successive interference cancellation, where only

a single t candidate is retained at each VP level. This
technique is not optimum, which means that further re-

duction in the required transmit power, i.e., smaller γ,

can be achieved once the VP stage is optimized.

To this end, the VP is represented as an integer

lattice-search as following:

t = argmin
t∈ZN

{

(s+ τt)TPTP(s+ τt)
}

,

= argmin
t∈ZN

‖P(s+ τt)‖2 . (5)

Now, let the transpose of the matrix H be factorized
into the product of a unitary matrix Q and an upper

triangular matrix R, thus, the search problem in (5)
based on the zero-forcing criterion is simplified into:

t = argmin
t∈ZK

‖L(s+ τt)‖2 ,

= argmin
t∈ZK

K
∑

i=1

∥

∥

∥

∥

∥

∥

Li,i(si + τtk) +

i−1
∑

j=1

Li,j(sj + τ t̂j)

∥

∥

∥

∥

∥

∥

2

,

(6)

where the lower-triangular matrix L = (R−1)T . As

such, the VP problem is defined as finding the integer

vector t that minimizes γ. In the sequel, t will be drawn

from the integer set A of size T . In the following sec-
tion, we introduce several conventional VP techniques

and the motivations for the proposed PQRDME.
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Fig. 2 An example of the conventional QRDM encoder for
M = T = K = 4.

1 42 3

1 3 1

43

32

0

2 branches are 

retained at each level

VP

level

1

2

3

4

root

3 4

2

32

partial VP #1 partial VP #2

Fig. 3 An example of the proposed parallel QRDM encoder
for p = 1, G = MG = 2, and T = K = 4.

3 Conventional VP techniques and Motivations

In this section, we briefly introduce three conventional

MU-MIMO precoding techniques, namely, SE, QRDME,

and FSE.

The main idea of the SE is to restrict the search for
the optimum perturbing vector inside a hypersphere of

a predefined radius. That is,

t = argmin
t∈ZN

(

‖P(s+ τt)‖2 ≤ d2
)

, (7)

where d is the search radius. SE is shown to achieve a

quasi-optimum performance with low average computa-

tional complexity [7]. However, SE has two drawbacks:

(i) its worst-case complexity is exponential, i.e., com-
parable to that of the brute-force search, and (ii) it has

an iterative tree-search phase that limits the efficient
implementation using pipelining.

To overcome the random computational complexity

of the SE, the QRDME has been proposed in [23]. In

the QRDME, the best M candidates with the least ac-

cumulative metrics are retained at each encoding level.

Fig. 2 depicts an example of the QRDME M = T =

K = 4. At the first encoding level, the best 4 can-

didates are retained for the second encoding level. At

the last encoding level, the perturbed vector with the

least accumulative metric is precoded and transmitted.

Although QRDME achieves a quasi-optimum perfor-

mance, its tree-search phase cannot be efficiently im-

plemented using pipelining, where consequently the en-

coding throughput is reduced.

In [15], we proposed the FSE, which overcomes both
drawbacks of the SE. The employed tree search strat-

egy in the FSE achieves a full parallelization of the

VP stage, leading to tremendous gains in the precod-

ing throughput. The only drawback of the FSE is that

it lags the optimum BER performance.

In this paper, we propose a PQRDME that achieves

a tradeoff between the achieved performance and the

precoding throughput by selecting the appropriate num-

ber of PVPs.

4 Proposed Parallel QRDM Encoder

The goal of the PQRDME is to achieve a tradeoff be-

tween encoding throughput, i.e., speed, and system per-

formance. To do that, the set of candidates for the ele-

ments of t, i.e., A, is divided into non-overlapping sub-

sets of equal cardinalities. That is,

A =

G
⋃

i=1

Di, (8)

where G is the number of subsets and the i-th subset
is designated Di. The tree-search of the conventional

QRDME is then divided into independent PVPs that

are processed in parallel, where the candidates for t1 at

the j-th PVP is drawn from the subset Dj . Moreover,

all the candidates for t are retained at the first p levels.
When p = 1, each PVP represents a smaller tree-search

equivalent to that of the conventional QRDME with the
difference that the candidates for t1 are drawn from the

partial subset D. However, when p = 2, all the resulting

branches at the first and second encoding levels are re-
tained. In the following, PQRDME for p = 1 and p = 2

are referred to as PQRDME-p1 and PQRDME-p2, re-

spectively. Note that the candidates for tp+1 to tK are

drawn from the full set A.
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Figure 3 depicts an example of the proposed PQRDME

for p = 1, G = MG = 2, and T = K = 4, where MG

is the number of candidates retained at each encoding

level per PVP. Note that the number inside the circle

representing each node indicates the index of the hy-

pothesis for t. At the first encoding level, the set of
candidates A is divided into two subsets of equal sizes.

As a result, the full tree is divided into two parallel and

independent PVP problems. In the j-th PVP, the root

node is extended to all possible candidates of (s1 + τt),

where t ∈ Dj . All obtained branches are retained and

their metrics are computed based on (5). At the second

encoding level, all the retained candidates from the first

level are extended to all possible candidates of (s2+τt),

where t ∈ A, the accumulative metric of all the result-

ing branches are computed using (5) and the best two

(i.e., MG) candidates with the least accumulative met-

rics are retained to the following encoding levels. This

process is repeated up to the last encoding level. For

each PVP, the best perturbed vector, with the least ac-

cumulative metric, is retained. These best candidates

per each PVP are compared and the best among them

is announced as the result of the proposed PQRDME-

p1 algorithm. The perturbed vector is then precoded

and transmitted via the nT transmit antennas.

Figure 4 depicts an example of the proposed PQRDME

for p = 2, G = MG = T = 2, and K = 4. At each

PVP, the root is extended to all possible candidates of

(s1+ τt) with t ∈ Dj , where all candidates are retained

(two candidate per PVP in this example). The retained

candidates at the first encoding level are extended to

all possible candidates (s2 + τt), where t ∈ A. Also, all

the resulting candidates are retained. In the third en-

coding level, the extended candidates are sorted based

on their accumulative metrics and the two (i.e., MG)
with the least accumulative metrics are retained for the

next encoding levels. The process is repeated as with
PQRDME-p1, where at the last encoding level the best

candidate that requires the least transmit power is pre-

coded and transmitted.

Based on the above description, it stems out that

the proposed PQRDME achieves a tradeoff between the

parallelization capabilities, by controlling the number of

PVPs (G), and the performance of the MU-MIMO sys-
tem. That is, the proposed encoder is at least G times

faster than the conventional QRDME for a tolerable

degradation in the BER performance. Also, compared

to the conventional QRDME, the proposed PQRDME

requires a lower number of comparisons to select the re-

tained hypotheses at each encoding level. The QRDME

retains all candidates at the first encoding level, there-

fore no comparisons are required. The T = M candi-

dates retained at the first encoding level are expanded

0

VP

level

1

2

3

4

root

partial VP #1 partial VP #2

1 2

1 2

1 2

22

1 2

21

1 2

Fig. 4 An example of the proposed parallel QRDM encoder
for p = 2, G = MG = T = 2, and K = 4.

to all possible hypotheses, leading to MT branches. To

order these branches and select the best M candidates,

we require ((M×T )2−1) comparisons. The same applies

to all the encoding levels except the first, leading to an

overall number of comparisons of ((M×T )2−1)(K−1),

which is equal to 765 for the parameters given in Fig.

2. In the case of PQRDME-p1, the first encoding level
does not require any comparison. In the following levels,

((MG × T )2 − 1) comparisons are required per PVP to

sort the extended branches and select the best MG can-

didates. This leads to a total of G((MG×T )2−1)(K−1)

comparisons, which is equal to 378 for the parame-

ters given in Fig. 3. Finally, PQRDME-p2 does not re-

quire comparisons in both the first and second encod-
ing levels, therefore it requires G((MG × T )2 − 1)(K −
2) = 60 comparisons, for the parameters given in Fig.

4. Thus, the proposed PQRDME requires a fraction

of the number of comparisons performed by the con-

ventional QRDME. Since comparisons are done seri-

ally, which add further delay to the VP stage, the pro-

posed encoder achieves additional gains in the encoding

throughput besides reducing the computational power

required to perform the comparisons. In terms of the
number of visited nodes and based on the parameters
of Figs. 2-4, the conventional QRDME visits T nodes

at the first encoding level and (M × T ) nodes at each

of the remaining encoding levels leading to a total of
(T + (M × T )(K − 1)) = 52 nodes, for the parameters
given in Fig. 2. The proposed PQRDME-p1 visits T

nodes at the first encoding level, and MGT nodes per

level per PVP at the remaining encoding levels, lead-
ing to a total of (T +(GMGT )(K − 1)) = 52 nodes, for

the parameters given in Fig. 3. Finally, the proposed
PQRDME-p2 visits T nodes at the first encoding level,
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GT nodes at the second encoding level, andMGT nodes

per level per PVP at the remaining (K−2) levels, lead-
ing to a total of (T (G + 1) + (GMGT )(K − 2)) nodes,

which is equal to 22 for the parameters given in Fig.

4. This emphasizes on the effectiveness of the proposed

PQRDME-p2 in terms of both number of comparisons
and number of visited nodes, as compared to the con-

ventional QRDME.

5 Simulation Results, Discussions, and

Analyses

5.1 Simulation environment

In the following, we use the linear MMSE criterion in

the precoding stage due to its superior performance,

as compared to the ZF criterion. Bits are mapped to

symbols using quadrature-phase shift keying (QPSK)
modulation. Also, we consider that the channel is ei-
ther perfectly or imperfectly known at the transmitter,
where the imperfection in the channel knowledge is due

to quantization error. Users are considered to be de-

centralized, hence they are non-cooperative. The BD of

the channel matrix is achieved via the singular-value

decomposition block diagonalization.

5.2 Setting the size of A

Unlike most works in the MIMO detection literature,
where the candidates for the transmitted data belong
to a predefined modulation set, the size of the set A
is not theoretically defined, but rather depends on the
system configuration and the employed VP technique.
Therefore, in this paper we use intensive simulations to
identify the size of the set A for the conventional and

the proposed encoders.

Table 1 summarizes the probability of t for t ∈ A
in the perturbing vector. We remarked that prob(t =

+a) = prob(t = −a) for a ∈ A, that is why we present
the values as prob(t = ±a) which is equal to 2×prob(t =

+a). We remark that the size of the set A for the
less optimized algorithms, such as the THP and FSE-
p1, is smaller compared to that of the more optimized

QRDME. Also, we remarked that the probability of

(|t| > 1) is very small but it has an impact on the BER

performance, especially at high value of signal-to-noise
ratio (see [15], Fig. 3.) Besides, we remarked that these

values are not affected by the size of the system (i.e.,

nU and nT ). Finally, since the proposed PQRDME-p2

algorithm achieves a quasi-optimal performance with T

= 3 (see Fig. 7), where a marginal gain in the BER can

be achieved by increasing T , the size of the set A is
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Fig. 5 Probability of the candidates for t using the proposed
PQRDME for p = 2, G = MG = T = 3, and K = 8.

therefore restricted to 3.

Fig. 5 depicts the probability of candidates for t us-

ing the proposed PQRDME for p = 2, G = MG = T =

3, and K = 8 for several SNR values. At low SNR val-

ues, prob(t = 0) is close to 1, which indicates that the

VP stage is not efficient and the resulting transmitter is

equivalent to the MMSE precoder. However, as the SNR

increases, prob(t = ±1) increases, where the required

transmit power is consequently reduced. This can be

seen from the BER curves where the performance of

the linear equalization and the proposed encoder coin-

cide at low SNR values while the proposed PQRDME

achieves better performance at high SNR close to the

optimum encoder.

5.3 Single-stream transmission with perfect CSI at the
transmitter

Fig. 6 shows the BER performance of the proposed

PQRDME for p = 1 and M = (G × MG) = T = 8

and those of several conventional precoding techniques.

Note that we set T = 5 and T = 7 in the case of THP
and FSE-p1, respectively, since no further improvement

is achieved by increasing T . For G = 2, PQRDME-

p1 performs close to the QRDME algorithm, while in-

creasing the encoding throughput by a factor of two.

When G is increased to 4, the encoding throughput is

increased by a factor of four, while the performance

is degraded due to the increased parallelization. How-

ever, the proposed PQRDME-p1 still outperforms the

FSE algorithm. Also, as shown in Figure 6, THP and

LMMSE have lower performance and diversity order

compared to the proposed PQRDME-p1 algorithm.

Fig. 7 depicts the performance of the proposed PQRDME-

p2. Note that for p = 2, the performance of the FSE
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Table 1 Probability of t in the perturbation vector τt in a MU-MIMO system for K = 8, nU = 4, and SNR = 20dB, averaged
over 100,000 independent trials.

Algorithm prob(t = 0) prob(t = ±1) prob(t = ±2) prob(t = ±3) prob(t = ±4)

THP (T = 9) 0.8760 0.1231 0.0009 0 0
FSE-p1 (T = 9) 0.8228 0.1737 0.0034 0.0002 0
QRDME (T = 9) 0.8133 0.1862 0.0005 0.0002 0.0001
PQRDME-p1 (T = 9, G = 3) 0.8228 0.1737 0.0034 0.0002 0.0001
PQRDME-p1 (T = 8, G = 4) 0.8278 0.1703 0.0019 0.0002 0
PQRDME-p1 (T = 8, G = 2) 0.8194 0.1800 0.0006 0.0002 0
FSE-p2 (T = 3, G = 3) 0.8096 0.1904 - - -
PQRDME-p2 (T = 3, G = 3) 0.8160 0.1840 - - -
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Fig. 6 BER performance of the proposed PQRDME for p =
1, M = T , and K = 8.

and that of the proposed PQRDME algorithm are im-

proved compared to the case of p = 1. Yet, the proposed
PQRDME-p2 outperforms the FSE-p2 by about 1dB at

a target BER of 10−4. Also, the proposed PQRDME-
p2, at least, triples the speed of the VP stage. This

happens because the proposed encoder not only par-

allelizes the VP stage but also reduces the number of

visited nodes and the performed comparisons to select

the best candidates at each encoding level.

5.4 Multi-stream transmission with perfect CSI at the

transmitter

When the number of users increases and each user is
equipped with more than one antenna, the encoder be-
comes extremely slow due to the high dimension of the

tree to be searched. To overcome this problem, the IUI

can be cancelled out at the transmitter side by means of

block diagonalization (BD). Therefore, the goal of the

BD is to transform the MU-MIMO channel into several

parallel SU-MIMO channels with zero inter-channel in-
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PQRDME−p2, T = 3

QRDME, T = 9

Fig. 7 BER performance of the proposed PQRDME for p =
2, MG = T , and K = 8.

terference [20]. That is, BD find the matrix B such that

Heff = HB =











Heff,1 0 · · · 0

0 Heff,2 · · · 0
...

...
. . .

...

0 0 · · · Heff,nU











. (9)

In this scenario, B can be seen as a beamforming ma-
trix, with Heff,i as the effective channel matrix for user

i. As a result of the BD, users’ data can be perturbed

and encoded independently, leading to further gains in

the encoding throughput.

In this paper, we consider a (nT , nU , nR) MU-MIMO

system with nT = (nU × nR). Fig. 8 depicts a BER

comparison between the proposed PQRDME-p2 and

FSE-p2 in (8, 4, 2) and (8, 2, 4) systems. The proposed

PQRDME-p2 outperform the conventional encoder by
0.8dB and 1.5dB in the (8, 2, 4) and (8, 4, 2) systems,

respectively.
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Fig. 8 BER performance of the proposed PQRDME-p2 for
MG = T = 3, and a (nT , nU , nR) MU-MIMO system.

5.5 MU-MIMO system with imperfect CSI at the

transmitter

In this section, we consider the channel coefficients to be

quantized at the mobile stations. Then, the quantized

version of each channel coefficient is fed back to the BS

over a fast allocated control channel. In this paper, we

consider the following two quantization schemes:

1. Lloyd-Max non-uniform quantizer:Uniform quan-

tization divides the range to which the variable be-

longs into equal intervals. If the variable to be quan-

tized belongs to a certain interval, then the centroid

of the interval is considered as the quantized version.

This quantizer is suitable for uniformly distributed

variables, which is not the case of the MU-MIMO
system. In this paper, we consider the real and imag-
inary parts of the channel to be i.i.d. centered Gaus-
sian variables. Therefore, the non-uniform Lloyd-

Max quantizer, which takes the probability density

function (pdf) of the variables to be quantized into

consideration, is more suitable [13,14]. The Lloyd-

Max quantizer iteratively finds the intervals’ end-
points so that the mean square error (MSE) between
each channel coefficient and its quantized version
is minimized. This can be achieved by allocating

shorter intervals when the pdf has high values (i.e.,

the variable is most probable) and longer intervals

when the pdf has low values. Fig. 9 depicts the per-

formance of the proposed PQRDME-p2 for several
values of B; the number of quantization bits for each

part. For a low B, the BER increases, where when

B = 5 the degradation due to the quantization error

is tolerable.
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PQRDME−p2, perfect
QRDME−p2: B = 3

QRDME−p2: B = 4

QRDME−p2: B = 5

QRDME, perfect

Fig. 9 BER performance of the proposed PQRDME-p2 for
MG = T = 3 and K = 8 with imperfect CSI at the transmit-
ter. The real and imaginary parts are quantized using Lloyd-
Max non-uniform quantizer, where each part is represented
by B bits.

2. Uniform phase quantization: In future-generation

communication systems, such as LTE/LTE-A [10],

the channel power is quantized and fed back to the

BS via a control signal to enable adaptive modula-

tion and coding (AMC), scheduling, etc. Therefore,
it is of interest to consider that the channel ampli-
tude is known at the transmitter and only quan-

tize the phase of each channel coefficient. Note that

the amplitude of the channel coefficient follows a

Rayleigh distribution which is a positive distribu-

tion with much more concentration than the Gaus-

sian one. Therefore, a lesser number of bits is re-

quired to quantize the amplitude as compared to

quantizing the real and imaginary parts which fol-

low a double-sided distribution with higher vari-

ance. Fig. 10 shows the BER performance of the

proposed PQRDME-p2 for several values of B; the

number of quantization bits for each phase value.

B = 6 is suitable for quantizing the phase of the
channel coefficients since the degradation due to the

quantization error is tolerable.

5.6 A remark on the optimality of the proposed

PQRDM encoder

The proposed encoder is quasi-optimum, which means

that the linear MMSE encoder might have a lower γ
if the VP stage deviates from the optimum solution.

Therefore, the efficiency of the vector perturbation can

be measured by the amount of reduction it can achieve

in the required transmit power, taking the linear pre-
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Fig. 10 BER performance of the proposed PQRDME-p2 for
MG = T = 3 and K = 8 with imperfect CSI at the transmit-
ter. The phase of each channel coefficient is uniformly quan-
tized and represented by B bits.
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Fig. 11 Percentage that the MU-MIMO system with vector
perturbation requires more power than the conventional lin-
ear precoding.

coder as a reference. Fig. 11 depicts the percentage of

achieving an increase in the transmit power by sev-

eral VP techniques. That is, the probability (given in

percent) that the system employing VP requires more

transmit power than the simple linear MMSE encoder.

Intuitively, this percentage increases proportionally with

the number of transmit antennas. This is because for

higher system dimensions, the probability that the VP

technique deviates from the optimum solution increases.

QRDME achieves the best performance followed by the

proposed algorithms, where at low system dimensions

the proposed PQRDME-p2 performs close to QRDME.

6 Conclusions

In this paper, we proposed a parallel QRDM encoder

(PQRDME) for MU-MIMO systems. Unlike the con-

ventional QRDME scheme, which has a limited capabil-

ity for parallel implementations, the proposed PQRDME

has a parallel tree-search structure, leading to higher
efficiency for hardware implementation via pipelining.
Besides, the proposed PQRDME-p2 achieves a tremen-

dous reduction in the computational complexity due to
its improved VP stage. In this paper, we considered re-
alistic scenarios, where users are equipped with more

than a single receive antenna in a multi-stream trans-
mission. Furthermore, we consider the channel coeffi-
cients to be quantized and fed back to the BS rather
than being perfectly known at the transmitter. To demon-

strate the efficiency of our proposed encoder in such sce-

nario, two quantization schemes have been addressed.

In all scenarios, simulation and analytical results show

that the proposed PQRDME performs close to the op-
timum encoder and attains the optimum diversity or-
der, while achieving higher encoding throughput and
much lower computational complexity. Moreover, the

proposed PQRDME outperforms the FSE and THP for
all the simulated scenarios.
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