Quantifying the reliability of fault classifiers

Abstract : Fault diagnostics problems can be formulated as classification tasks. Due to limited data and to uncertainty, classification algorithms are not perfectly accurate in practical applications. Maintenance decisions based on erroneous fault classifications result in inefficient resource allocations and/or operational disturbances. Thus, knowing the accuracy of classifiers is important to give confidence in the maintenance decisions. The average accuracy of a classifier on a test set of data patterns is often used as a measure of confidence in the performance of a specific classifier. However, the performance of a classifier can vary in different regions of the input data space. Several techniques have been proposed to quantify the reliability of a classifier at the level of individual classifications. Many of the proposed techniques are only applicable to specific classifiers, such as ensemble techniques and support vector machines. In this paper, we propose a meta approach based on the typicalness framework (Kolmogorov's concept of randomness), which is independent of the applied classifier. We apply the approach to a case of fault diagnosis in railway turnout systems and compare the results obtained with both extreme learning machines and echo state networks.
Document type :
Journal articles
Complete list of metadatas

Cited literature [31 references]  Display  Hide  Download

https://hal-supelec.archives-ouvertes.fr/hal-00930985
Contributor : Yanfu Li <>
Submitted on : Tuesday, January 14, 2014 - 5:19:55 PM
Last modification on : Tuesday, March 5, 2019 - 9:35:06 AM
Long-term archiving on : Tuesday, April 15, 2014 - 4:27:49 PM

File

FINK_ZIO_WEIDMANN_INFORMATION_...
Files produced by the author(s)

Identifiers

Citation

Olga Fink, Enrico Zio, Ulrich Weidmann. Quantifying the reliability of fault classifiers. Information Sciences, Elsevier, 2014, 266, pp.65-74. ⟨10.1016/j.ins.2013.12.008⟩. ⟨hal-00930985⟩

Share

Metrics

Record views

414

Files downloads

326