E. Alpaydin, Introduction to machine learning, 2010.

P. Baraldi, R. Razavi-far, and E. Zio, A method for estimating the confidence in the identification of nuclear transients by a bagged ensemble of fcm classifiers, in: Seventh American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation , Control and Human-Machine Interface Technologies NPIC&HMIT, pp.283-293, 2010.

D. Barbara, C. Domeniconi, and J. P. Rogers, Detecting outliers using transduction and statistical testing, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.55-64, 2006.
DOI : 10.1145/1150402.1150413

Y. Bengio, Gradient-Based Optimization of Hyperparameters, Neural Computation, vol.58, issue.8, pp.1889-1900, 2000.
DOI : 10.1038/317314a0

Z. Bosnic and I. Kononenko, An overview of advances in reliability estimation of individual predictions in machine learning, Intelligent Data Analysis, vol.13, pp.385-401, 2009.

B. Chacko, V. Krishnan, G. Raju, and P. B. Anto, Handwritten character recognition using wavelet energy and extreme learning machine, International Journal of Machine Learning and Cybernetics, vol.20, issue.8, pp.149-161, 2012.
DOI : 10.1007/s13042-011-0049-5

M. El-koujok, M. Benammar, N. Meskin, M. Al-naemi, and R. Langari, Multiple sensor fault diagnosis by evolving data-driven approach, Information Sciences, vol.259, 2013.
DOI : 10.1016/j.ins.2013.04.012

A. Gammerman and V. Vovk, Prediction algorithms and confidence measures based on algorithmic randomness theory, Theoretical Computer Science, vol.287, issue.1, pp.209-217, 2002.
DOI : 10.1016/S0304-3975(02)00100-7

M. Hermans and B. Schrauwen, Recurrent Kernel Machines: Computing with Infinite Echo State Networks, Neural Computation, vol.3, issue.1, pp.104-133, 2012.
DOI : 10.1016/j.neucom.2010.01.016

URL : http://hdl.handle.net/1854/LU-1979943

T. Heskes, Practical confidence and prediction intervals Advances in neural information processing systems, pp.176-182, 1997.

A. E. Hoerl and R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

G. B. Huang, D. Wang, and Y. Lan, Extreme learning machines: a survey, International Journal of Machine Learning and Cybernetics, vol.23, issue.3, pp.107-122, 2011.
DOI : 10.1007/s13042-011-0019-y

G. B. Huang, H. Zhou, X. Ding, and R. Zhang, Extreme learning machine for regression and multiclass classification, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, pp.42-513, 2012.

G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, vol.70, issue.1-3, pp.489-501, 2006.
DOI : 10.1016/j.neucom.2005.12.126

H. Jaeger and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication, Science, vol.304, issue.5667, pp.78-80, 2004.
DOI : 10.1126/science.1091277

N. Japkowicz and M. Shah, Evaluating learning algorithms a classification perspective, 2011.

A. K. Jardine, D. Lin, and D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, vol.20, issue.7, pp.1483-1510, 2006.
DOI : 10.1016/j.ymssp.2005.09.012

I. Kononenko and I. Bratko, Information-based evaluation criterion for classifier's performance, Machine Learning, vol.15, issue.1, pp.67-80, 1991.
DOI : 10.1007/BF00153760

Y. Lan, Y. C. Soh, and G. B. Huang, Ensemble of online sequential extreme learning machine, Neurocomputing, vol.72, issue.13-15, pp.3391-3395, 2009.
DOI : 10.1016/j.neucom.2009.02.013

M. Li and P. Vitanyi, An introduction to Kolmogorov complexity and its applications, 1993.

M. Lukosevicius, A Practical Guide to Applying Echo State Networks, Lecture Notes in Computer Science, vol.1, issue.10, pp.659-686
DOI : 10.1162/neco.1989.1.2.270

M. S. Mahmoud and H. M. Khalid, Expectation maximization approach to data-based fault diagnostics, Information Sciences, vol.235, pp.80-96, 2013.
DOI : 10.1016/j.ins.2012.01.031

G. Manjunath and H. Jaeger, Echo State Property Linked to an Input: Exploring a Fundamental Characteristic of Recurrent Neural Networks, Neural Computation, vol.17, issue.3, pp.25-671, 2013.
DOI : 10.1007/s11766-009-2013-7

P. Martin-löf, The definition of random sequences, Information and Control, vol.9, issue.6, pp.602-619, 1966.
DOI : 10.1016/S0019-9958(66)80018-9

Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten et al., OP-ELM: Optimally Pruned Extreme Learning Machine, IEEE Transactions on Neural Networks, vol.21, issue.1, pp.158-162, 2009.
DOI : 10.1109/TNN.2009.2036259

URL : https://hal.archives-ouvertes.fr/hal-00541415

S. M. Omohundro, Five balltree construction algorithms, 1989.

Z. N. Sadough-vanini, K. Khorasani, and N. Meskin, Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach, Information Sciences, vol.259, 2013.
DOI : 10.1016/j.ins.2013.05.032

E. Smirnov, S. Vanderlooy, and I. , Sprinkhuizen-Kuyper, Meta-typicalness approach to reliable classification, Frontiers in Artificial Intelligence and Applications, vol.141, issue.811, 2006.

G. Vachtsevanos, Intelligent fault diagnosis and prognosis for engineering systems, 2006.
DOI : 10.1002/9780470117842

V. Vovk, A. Gammerman, and C. Saunders, Machine-learning applications of algorithmic randomness, Proceedings of the Sixteenth International Conference on Machine Learning (ICML-1999), pp.444-453, 1999.

Q. Wu and R. Law, Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization, Information Sciences, vol.180, issue.23, pp.4514-4528, 2010.
DOI : 10.1016/j.ins.2010.08.006