Performance Analysis of Robust Detectors for Hyperspectral Imaging

Abstract : When accounting for heterogeneity and non-Gaussianity of real hyperspectral data, elliptical distributions provide reliable models for background characterization. Through these assumptions, this paper highlights the fact that robust estimation procedures are an interesting alternative to classical methods and can bring some great improvement to the detection process. The goal of this paper is then not only to recall well-known methodologies of target detection but also to propose ways to extend them for taking into account the heterogeneity and non-Gaussianity of the hyperspectral images.
Type de document :
Communication dans un congrès
2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013), Jul 2013, Melbourne, Australia. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp.1-4, 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013). 〈10.1109/IGARSS.2013.6721348〉
Liste complète des métadonnées

https://hal-supelec.archives-ouvertes.fr/hal-00934285
Contributeur : Anne-Hélène Picot <>
Soumis le : mardi 21 janvier 2014 - 17:24:19
Dernière modification le : mercredi 19 septembre 2018 - 01:14:59

Lien texte intégral

Identifiants

Citation

Joana Frontera-Pons, Jean-Philippe Ovarlez, Frédéric Pascal, Jocelyn Chanussot. Performance Analysis of Robust Detectors for Hyperspectral Imaging. 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013), Jul 2013, Melbourne, Australia. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp.1-4, 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013). 〈10.1109/IGARSS.2013.6721348〉. 〈hal-00934285〉

Partager

Métriques

Consultations de la notice

390