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ABSTRACT

When accounting for heterogeneity and non-Gaussianity of

real hyperspectral data, elliptical distributions provide reli-

able models for background characterization. Through these

assumptions, this paper highlights the fact that robust esti-

mation procedures are an interesting alternative to classical

methods and can bring some great improvement to the detec-

tion process. The goal of this paper is then not only to recall

well-known methodologies of target detection but also to pro-

pose ways to extend them for taking into account the hetero-

geneity and non-Gaussianity of the hyperspectral images.

Index Terms— hypespectral imaging, target detection,

elliptical distributions, M-estimators

1. INTRODUCTION

Hyperspectral imaging (HSI) extends from the fact that for

any given material, the amount of radiation emitted varies

with wavelength. Hyperspectral imaging sensors measure

the radiance of the materials within each pixel area at a very

large number of contiguous spectral bands and provide image

data containing both spatial and spectral information. Hyper-

spectral target detection and anomaly detection may be used

to locate targets that generally cannot be resolved by spatial

resolution.

Target detection tasks arise in many different military and

civilian applications and have been widely investigated in

several signal processing domains such as radar, sonar, com-

munications, etc. When the spectral signature of the desired

target is known, it can be used as steering vector in Target

Detection techniques [1]. Most of these techniques can also

be found in the radar detection domain. In this context, Sta-

tistical Detection Theory [2] has led to several well-known

algorithms, for instance the Matched Filter, the Kelly Detec-

tor and its adaptive versions [3]. Other interesting approaches

are based on subspace projection methods [4]. But all of

these different detection algorithms are based on the statisti-

cal background characterization, i.e. on the estimation of the

mean vector and the covariance matrix of the background.

It has been often assumed for detector design that signals,

interferences, noise and background are modeled as Gaussian

stochastic processes. Indeed, this assumption makes sense in

many applications. However, in hyperspectral imaging, the

actual response of a detector to the background pixels dif-

fers from the theoretically predicted distribution for Gaussian

backgrounds. In fact, as stated in [5], the empirical distri-

bution usually has heavier tails compared to the theoretical

distribution, and these tails strongly influence the observed

false-alarm rate of the detector.

One of the most general and acknowledged models for back-

ground statistics characterization is the family of Ellipti-

cal Contoured Distributions (ECD). They account for non-

Gaussianity providing a long tailed alternative to multivariate

normal model. They are proven to represent a more accurate

characterization of HSI than models based on Gaussian as-

sumption [5].

Although non-Gaussian distributions are assumed for back-

ground modeling, the parameters estimation is still performed

using classical Gaussian based estimators; as for the covari-

ance matrix, generally determined according to the SCM

approach. These classical estimators correspond to the Maxi-

mum Likelihood Estimators for Gaussian assumption. How-

ever, they lead to sub-optimal detection schemes when the

noise is a non-Gaussian process. When working on ECD

framework the model can be used to assess the robustness of

statistical procedures and to derive alternative robust estima-

tors of the parameters, the mean vector and the covariance

matrix [6]. These can then be used as plug-in estimators in

place of the unknown mean vector or/and of the covariance

matrix. This is a simple but often efficient method to ob-

tain robust properties for signal processors derived under the

Gaussian assumption. We note that the use of robust signal

processors is of fundamental interest due to the occurrence of

impulsive environments and outliers in practical hyperspec-

tral images [7, 8].

2. ELLIPTICALLY CONTOURED DISTRIBUTIONS

A m-dimensional random complex vector y = [y1y2...ym]T

with mean µ and scatter matrix Σ has an elliptical distribution
if its probability density function (PDF) has the form

fy(y) = |Σ|−1hm((y − µ)HΣ
−1(y − µ)) (1)
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where H denotes the conjugate transpose operator and hm(.)
is any function such as (1) defines a PDF in C

m . The function

hm is usually called density generator and it is assumed to be

only approximately known. Note that it produces density con-

tours corresponding to elliptical surfaces. If the second-order

moment exists, then Σ reflects the structure of the covariance

matrix of the elliptically distributed random vector y, i.e. the

covariance matrix is equal to the scatter matrix up to a scalar

constant. It serves to characterize the correlation structure

existing within the spectral bands. It is worth pointing out

that the ECD class includes a large number of distributions,

notably the Gaussian distribution, multivariate t distribution,

K-distribution or multivariate Cauchy. Thus it allows for het-

erogeneity of the background power with the texture.

3. ROBUST PARAMETERS ESTIMATION

Along with their well-known properties and their simplicity
of analysis, the sample covariance matrix (SCM) M̂SCM =
1

N

∑N
i=1

yiy
H
i and the sample mean vector (SMV) µ̂SMV =

1

N

∑N
i=1

yi are the most extended estimators since they are the
Maximum Likelihood Estimators for Gaussian case. How-
ever, such widespread techniques are suboptimal when the
noise is a non-Gaussian stochastic process. This article re-
views some robust procedures particularly suited for estimat-
ing the covariance matrix and the mean vector of elliptical
populations. The M-estimators were first introduced as a gen-
eralization of Maximum Likelihood Estimators (MLE) and
have been used in several signal processing applications, such
as radar detection. The complex M-estimators of location and
scatter are defined as the joint solution of:

µ̂ =

N
∑

i=1

u1(ti)yi

N
∑

i=1

u1(ti)

, (2)

M̂ =
1

N

N
∑

i=1

u2(t
2
i ) (yi − µ̂) (yi − µ̂)H (3)

where ti =
(

(yi − µ̂)HM̂−1(yi − µ̂)
)1/2

, and where u1, u2

denote any real-valued weighting functions on the quadratic

form ti. Remark that the main purpose of u1 and u2 is to

attenuate high contributions of this distance (outliers rejec-

tion). The choice of u1 and u2 do not need to be related to

a particular elliptical distribution and therefore, M-estimators

constitute a wide class of estimators that include the MLEs.

Existence and uniqueness have been proven in the real case,

provided functions u1, u2 satisfy a set of general assumptions

stated by Maronna [9]. Olilla has shown in [10] that these

conditions hold also in the complex case. We detail here, the

particular cases of the Fixed Point M-estimator and Huber’s

type M-estimator.

3.1. Fixed Point Estimators

The Fixed Point approach, according to the definition pro-
posed by Tyler in [11], satisfy the following equations:

µ̂FP =

N
∑

i=1

yi
(

(yi − µ̂FP )
HM̂FP (yi − µ̂FP )

)1/2

N
∑

i=1

1
(

(yi − µ̂FP )
HM̂FP (yi − µ̂FP )

)1/2

(4)

and

M̂FP =
m

N

N
∑

i=1

(yi − µ̂FP ) (yi − µ̂FP )
H

((yi − µ̂FP )
HM̂FP (yi − µ̂FP ))

(5)

which are the particular cases of (2) and (3) for u1(t) = t−1

and u2(t
2) = mt−2. For the scale-only problem, the Fixed

Point covariance matrix estimate has been widely investigated

in statistics and signal processing literature [12]. We refer to

[13] for a detailed performance analysis.

The main results on the statistical properties of M̂FP are re-

called for elliptical distribution framework (and µ assumed to

be known): M̂FP is a consistent and unbiased estimate of M;

its asymptotic distribution is Gaussian and its covariance ma-

trix is fully characterized in [14]; its asymptotic distribution

is the same as the asymptotic distribution of a Wishart matrix

with mN/(m + 1) degrees of freedom. Remark that the dis-

tribution of M̂FP does not depend on the specific elliptical

distribution.

3.2. Huber type M-estimators

The Huber’s M-estimators [15] are defined in the complex
case [16] when taking in (2), (3) the following weighting
functions:

u1(t) = min (1, k/t) u2(t
2) =

1

β
min

(

1, k2/t2
)

where k > 0 and β depend on an adjustable parameter 0 <
q < 1 according to

q = F2m(2k2)

β = F2m+2(2k
2) + k2 1− q

m

where Fm is the cumulative distribution function of a χ2 dis-

tribution with m degrees of freedom. The Huber-estimators

might be interpreted as a mixture between the robust Fixed

Point and the classical SCM. The values of the quadratic form

below k2 are kept and treated as in the SMV and SCM esti-

mators; and the values higher than k2 are attenuated by the

weighting function similarly to the Fixed Point approach. In a

complex Gaussian context, it can be shown that when N tens

to infinity, the proportion of data processed with the SCM is

equal to q.
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4. TARGET DETECTION SCHEMES

We address the problem of the detection of a known signal
vector (target response) s corrupted by an additive noise b in
a m-dimensional complex vector y. The signal absent vs. sig-
nal present problem can be stated as a binary hypothesis test
H0 and H1. Under hypothesis H1, it is assumed that the ob-
served data consists on the sum of a signal and background
noise y = αp + b with p a perfectly known complex steer-
ing vector (characterizing for example the spectral material to
detect) and α is the signal amplitude.
In practice, the background statistics are unknown and have
to be estimated from N signal-free secondary data. The adap-
tive detector is obtained by replacing the unknown parameters
by their estimates. For example, an estimator may be ob-
tained from the range cells surrounding the cell under test.
The size of the cell has to be chosen large enough to ensure
the invertibility of the covariance matrix and small enough
to justify both spectral homogeneity (stationarity) and spatial
homogeneity.
If some a priori knowledge of the noise statistics (e.g., K -
distribution, t-distribution, etc.) is available, then M and µ

should be estimated by the MLE M̂ and µ̂ of the covariance
matrix and the mean vector of the assumed elliptical model.
When there is no reliable statistical information on secondary
data, they are assumed to be i.i.d. random samples from an
unknown elliptical contoured distribution. Then practically
any robust M-estimator could be used in the detector scheme.
The Adaptive Matched Filter (AMF) is the optimal linear fil-
ter for maximizing the signal to noise ratio (SNR) in the pres-
ence of additive stochastic noise:

ΛAMF (y) =
|pH M̂−1 (y − µ̂)|2

(pH M̂−1 p)

H1

≷
H0

λ

This detector hold the CFAR properties in the sense that
its false alarm expression just depend on the dimension of
the vector m and the number of secondary data used for the
estimation N . However, its performance strongly relies on
the good fit of the Gaussian model and the false alarm rate is
highly increased when normal assumption is not attained.
The Adaptive Normalized Matched Filter (ANMF), also
known as the linear quadratic Generalized Likelihood Ra-
tio Test (GLRT) :

ΛANMF (y) =
|pH M̂−1 (y − µ̂)|2

(pH M̂−1p)
(

(y − µ̂)H M̂−1 (y − µ̂)
)

H1

≷
H0

λ

An important feature of the detector is its invariance under
scalar multiples of y. This implies, thanks to the properties of
the elliptical distributions, that the detector behaves according
to the same distribution regardless of the true elliptical distri-
bution, i.e., it is distribution-free. This is of major interest in
areas of background transition, like coastal areas (ground and
sea) or the edge of forests (fields and trees) because the detec-
tor resulting distribution should be insensitive to the different
clutter areas.
The Kelly detector was derived in [17]. It is based on the
GLRT assuming in this case that the covariance matrix is un-
known. Then, the adaptive Kelly detector scheme including

the estimated mean takes the form:

ΛKelly(y) = (6)

|pH M̂−1 (y − µ̂)|2

(pH M̂−1p)
(

1 + 1

N
(y − µ̂)H M̂−1 (y − µ̂)

)

H1

≷
H0

Nλ

(7)

The test in (7) is a CFAR detector, in which the probability

of false alarm is independent of the true covariance matrix.

However, it has no known optimality property. The AMF and

the Kelly detector are based on the same assumptions about

the nature of the observations. It is therefore interesting to

compare their detection performance for a given Pfa. Note

that for large values of N the performances are substantially

the same.

5. SIMULATIONS

On a first stage, the theoretical analysis is validated on simu-

lated data. We oppose the detection schemes proposed above

for a heavy tail K-distribution, with shape parameter ν = 0.1.

The experiments were conducted on m = 10 dimensional

vectors, for N = 40 secondary data and the computations

have been made through 105 MonteCarlo trials.

We compare the three detection schemes in terms of proba-

bility of detection. We fixe the probability of false alarm to

Pfa = 10−3 and then we set the threshold to reach the de-

sired Pfa, according to the false alarm regulation curves. In

non-Gaussian case, see Fig. 1, the Gaussian based detectors

do not present optimal results anymore. We observe that the

AMF and the Kelly detector are the less performant in SNR

requirements. The ANMF takes advantage of its invariance

under a scale factor and indicates the best result, and so it

is the detection test to retain. The use of robust estimators

leads to a significant improvement when dealing with impul-

sive clutter; the decrease on the threshold allows to detect tar-

gets even for small SNR values.
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Fig. 1. Probability of detection for different SNR values and

Pfa = 10−3 in K-distribution case.

The same analysis has been performed on the hyperspec-

tral image presented in Fig. 2 [18]. Hyperspectral data repre-

sent reflectance values, and hence, they are real and positive.
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They have been passed through a Hilbert filter to render them

complex. After sampling, the vector is of dimension m = 10
and the parameters estimation is performed locally using a

sliding window of size seven, and N = 48. Once the Pfa

has been fixed again at 10−3, we place artificial targets over

the image. We compare in Fig. 3 the outcome of the different

detection tests. Note that the use of the Fixed Point estimators

jointly with the ANMF lead to the best performance results,

while AMF presents the highest SNR requirements.

Figure 1. Color rendering of self test hyperspectral image.

 

Fig. 2. True color composition of the HyMap scene.
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Fig. 3. Probability of detection for different SNR values and

Pfa = 10−3 in real HSI scene.

6. CONCLUSION

Using elliptical distributions for background modeling allows

for heterogeneity consideration in non-Gaussian environ-

ment. We have proposed different estimators for statistical

characterization of the noise. In particular, the class of M-

estimators, which are specially appropriate to the addressed

problem. We have recalled Fixed Point estimators and Huber

type M-estimators emphasizing their statistical properties.

Finally, we have presented three classical detection schemes

and compared their performance in terms of probability of

detection.

7. REFERENCES

[1] D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image

processing for automatic target detection applications,” Lin-

coln Laboratory Journal, vol. 14, no. 1, pp. 79–116, 2003.

[2] S. M. Kay, Fundamentals of Statistical signal processing, Vol-

ume 2: Detection theory. Prentice Hall PTR, 1998.

[3] E. J. Kelly, “An adaptive detection algorithm,” IEEE Trans.-

AES, vol. 23, no. 1, pp. 115–127, November 1986.

[4] S. Kraut, L. L. Scharf, and L. T. Mc Whorter, “Adaptive sub-

space detectors,” IEEE Trans.-SP, vol. 49, no. 1, pp. 1–16, Jan-

uary 2001.

[5] D. Manolakis and D. Marden, “Non gaussian models for hyper-

spectral algorithm design and assessment,” in Geoscience and

Remote Sensing Symposium, 2002. IGARSS’02. 2002 IEEE In-

ternational, vol. 3. IEEE, 2002, pp. 1664–1666.

[6] F. Gini and M. V. Greco, “Covariance matrix estimation for

CFAR detection in correlated heavy tailed clutter,” Signal Pro-

cessing, special section on SP with Heavy Tailed Distributions,

vol. 82, no. 12, pp. 1847–1859, December 2002.

[7] J. Ovarlez, S. Pang, F. Pascal, V. Achard, and T. Ng, “Robust

detection using the sirv background modelling for hyperspec-

tral imaging,” in Geoscience and Remote Sensing Symposium

(IGARSS), 2011 IEEE International. IEEE, 2011, pp. 4316–

4319.

[8] J. Frontera-Pons, M. Mahot, J. Ovarlez, F. Pascal, S. Pang, and

J. Chanussot, “A class of robust estimates for detection in hy-

perspectral images using elliptical distributions background,”

in Geoscience and Remote Sensing Symposium (IGARSS),

2012 IEEE International. IEEE, 2012, pp. 4166–4169.

[9] R. A. Maronna, “Robust M -estimators of multivariate location

and scatter,” Annals of Statistics, vol. 4, no. 1, pp. 51–67, Jan-

uary 1976.

[10] E. Ollila and V. Koivunen, “Influence functions for array co-

variance matrix estimators,” Proc. IEEE Workshop on Statisti-

cal Signal Processing (SSP),ST Louis, MO, pp. 445–448, Oc-

tober 2003.

[11] D. Tyler, “A distribution-free m-estimator of multivariate scat-

ter,” The Annals of Statistics, vol. 15, no. 1, pp. 234–251, 1987.

[12] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larza-

bal, “Covariance structure maximum likelihood estimates in

compound gaussian noise : Existence and algorithm analysis,”

IEEE Trans.-SP, vol. 56, no. 1, pp. 34–48, January 2008.

[13] F. Pascal, P. Forster, J.-P. Ovarlez, and P. Larzabal, “Perfor-

mance analysis of covariance matrix estimates in impulsive

noise,” IEEE Trans.-SP, vol. 56, no. 6, pp. 2206–2217, June

2008.

[14] ——, “Theoretical analysis of an improved covariance ma-

trix estimator in non-gaussian noise,” in Proc. IEEE-ICASSP,

vol. IV, Philadelphia, March 2005, pp. 69–72.

[15] P. J. Huber, “Robust estimation of a location parameter,” The

Annals of Mathematical Statistics, vol. 35, no. 1, pp. 73–101,

1964.

[16] E. Ollila and V. Koivunen, “Robust antenna array processing

using m-estimators of pseudo-covariance,” in Personal, Indoor

and Mobile Radio Communications, 2003. PIMRC 2003. 14th

IEEE Proceedings on, vol. 3. IEEE, 2003, pp. 2659–2663.

[17] E. J. Kelly, “An adaptive detection algorithm,” Aerospace and

Electronic Systems, IEEE Transactions on, no. 2, pp. 115–127,

1986.

[18] D. Snyder, J. Kerekes, I. Fairweather, R. Crabtree, J. Shive, and

S. Hager, “Development of a web-based application to evaluate

target finding algorithms,” in Geoscience and Remote Sensing

Symposium, 2008. IGARSS 2008. IEEE International, vol. 2.

IEEE, 2008, pp. II–915.

4


