Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant

Abstract : In this paper we compare two approaches for uncertainty propagation in a model for Environmental Impact Assessment (EIA). A purely Probabilistic (PMC) and a Hybrid probabilistic-possibilistic Monte Carlo (HMC) method are considered in their application for the estimation of the ground levels concentration of dioxin/furans emitted from a waste gasification plant. Under the condition of insufficient information for calibrating the estimation model parameters, HMC is shown to be a valid way for properly propagating parameters uncertainty to the model output, without adopting arbitrary and subjective assumptions on the input probability distribution functions. In this sense, HMC could improve the transparency of the EIA procedures with positive effects on the communicability and credibility of its findings.
Type de document :
Article dans une revue
Reliability Engineering and System Safety, Elsevier, 2013, 120, pp.98-105. 〈10.1016/j.ress.2013.05.012〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-00934518
Contributeur : Yanfu Li <>
Soumis le : mercredi 22 janvier 2014 - 11:04:54
Dernière modification le : mardi 8 mai 2018 - 10:22:46
Document(s) archivé(s) le : mercredi 23 avril 2014 - 01:05:10

Fichiers

RESS_2012_man_1807.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

G. Ripamonti, G. Lonati, Piero Baraldi, F. Cadini, Enrico Zio. Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant. Reliability Engineering and System Safety, Elsevier, 2013, 120, pp.98-105. 〈10.1016/j.ress.2013.05.012〉. 〈hal-00934518〉

Partager

Métriques

Consultations de la notice

227

Téléchargements de fichiers

163