Model-based and data-driven prognostics under different available information

Abstract : In practical industrial applications, different prognostic approaches can be used depending on the information available for the model development. In this paper, we consider three different cases: (1) a physics-based model of the degradation process is available; (2) a set of degradation observations measured on components similar to the one of interest is available; (3) degradation observations are available only for the component of interest. The objective of the present work is to develop prognostic approaches properly tailored for these three cases and to evaluate them in terms of the assumptions they require, the accuracy of the Remaining Useful Life (RUL) predictions they provide and their ability of providing measures of confidence in the predictions. The first case is effectively handled within a particle filtering (PF) scheme, whereas the second and third cases are addressed by bootstrapped ensembles of empirical models. The main methodological contributions of this work are (i) the proposal of a strategy for selecting the prognostic approach which best suits the information setting, even in presence of mixed information sources; (ii) the development of a bootstrap method able to assess the confidence in the RUL prediction in the third case characterized by the unavailability of any degradation observations until failure. A case study is analyzed, concerning the prediction of the RUL of turbine blades affected by a developing creep.
Type de document :
Article dans une revue
Probabilistic Engineering Mechanics, Elsevier, 2013, 32, pp.66-79. 〈10.1016/j.probengmech.2013.01.003〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-00934560
Contributeur : Yanfu Li <>
Soumis le : mercredi 22 janvier 2014 - 13:43:44
Dernière modification le : mardi 8 mai 2018 - 10:22:46
Document(s) archivé(s) le : mercredi 23 avril 2014 - 01:40:10

Fichier

PREM_Preprint_-_Model-Based_an...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Piero Baraldi, F. Cadini, Francesca Mangili, Enrico Zio. Model-based and data-driven prognostics under different available information. Probabilistic Engineering Mechanics, Elsevier, 2013, 32, pp.66-79. 〈10.1016/j.probengmech.2013.01.003〉. 〈hal-00934560〉

Partager

Métriques

Consultations de la notice

341

Téléchargements de fichiers

442