General Inner Approximation of Vector-valued Functions

Abstract : This paper addresses the problem of evaluating a subset of the range of a vector-valued function. It is based on a work by Goldsztejn and Jaulin which provides methods based on interval analysis to address this problem when the dimension of the domain and co-domain of the function are equal. This paper extends this result to vector-valued functions with domain and co-domain of different dimensions. This extension requires the knowledge of the rank of the Jacobian function on the whole domain. This leads to the sub-problem of extracting an interval sub-matrix of maximum rank from a given interval matrix. Three different techniques leading to approximate solutions of this extraction are proposed and compared.
Type de document :
Article dans une revue
Reliable Computing, Springer Verlag, 2013, 18, pp.117-143
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-00935773
Contributeur : Michel Kieffer <>
Soumis le : vendredi 24 janvier 2014 - 09:53:40
Dernière modification le : mardi 25 septembre 2018 - 11:32:35
Document(s) archivé(s) le : jeudi 24 avril 2014 - 22:15:46

Fichier

main_sous_approx.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00935773, version 1

Citation

Olivier Mullier, Eric Goubault, Michel Kieffer, Sylvie Putot. General Inner Approximation of Vector-valued Functions. Reliable Computing, Springer Verlag, 2013, 18, pp.117-143. 〈hal-00935773〉

Partager

Métriques

Consultations de la notice

478

Téléchargements de fichiers

132