Global Sensitivity Analysis of Multi-State Markov Reliability Models of Power Equipment Approximated by Polynomial Chaos Expansion

Claudio Rocco 1 Enrico Zio 2
2 Chaire Sciences des Systèmes et Défis Energétiques EDF/ECP/Supélec
LGI - Laboratoire Génie Industriel - EA 2606, SSEC - Chaire Sciences des Systèmes et Défis Energétiques EDF/ECP/Supélec
Abstract : Reliability and availability of electric power system equipment (e.g., generator units, transformers) are often evaluated by defining and solving Markov models. Transition rates among the identified equipment states are estimated from experimental and field data, or expert judgment, with inevitable uncertainty. For model understanding and to guide validation and confidence building, it is of interest to investigate the effects of the uncertainty in the input transition rates on the output reliability and availability. To this aim, Global Sensitivity Analysis (GSA) can be used for defining importance (sensitivity) indexes that allow a ranking of the transition rates with respect to their influence on the uncertainty in the output. In general, GSA requires a large number of model evaluations. In this paper, a metamodel is defined to estimate the performance index of interest (e.g. reliability or availability). The metamodel is built based on polynomial chaos expansion (PCE), a multidimensional polynomial model approximation whose coefficients are determined by evaluating the model in a reduced set of predetermined values of the input. The proposed approach is illustrated on a power generating unit.
Type de document :
Article dans une revue
Journal of KONBiN, 2013, 23 (1), pp.59-70. 〈10.2478/jok-2013-0038〉
Liste complète des métadonnées

https://hal-supelec.archives-ouvertes.fr/hal-00936273
Contributeur : Yanfu Li <>
Soumis le : vendredi 24 janvier 2014 - 17:39:56
Dernière modification le : vendredi 20 octobre 2017 - 01:18:00

Identifiants

Citation

Claudio Rocco, Enrico Zio. Global Sensitivity Analysis of Multi-State Markov Reliability Models of Power Equipment Approximated by Polynomial Chaos Expansion. Journal of KONBiN, 2013, 23 (1), pp.59-70. 〈10.2478/jok-2013-0038〉. 〈hal-00936273〉

Partager

Métriques

Consultations de la notice

141